机器学习算法基础

本文介绍了机器学习的基础,包括数据集的获取、特征工程的步骤,如字典数据特征值化、文本特征抽取,以及数据预处理的归一化、标准化等。讨论了sklearn库在数据集和估计器上的应用,并详细阐述了监督学习中的分类算法如KNN、朴素贝叶斯、决策树和随机森林,以及评估模型的方法。同时,还涵盖了数据降维技术如PCA和LDA。
摘要由CSDN通过智能技术生成

目录

可用数据集

特征工程

数据的特征抽取

对字典数据进行特征值化

文本特征抽取

TfidfVectorizer

数据的特征预处理

归一化

标准化

缺失值

数据降维

PCA

线性判别分析LDA

机器学习基础

数据类型

机器学习算法分类

监督学习(预测)

无监督学习

机器学习开发流程

sklearn数据集和估计器

数据集

sklearn分类数据集

数据集进行分割

用于分类的大数据集(新闻)

sklearn回归数据集

监督学习

分类算法——k近邻算法(KNN)和朴素贝叶斯算法

分类模型的评估

模型的选择与调优

分类算法——决策树和随机森林

回归算法

分类算法——逻辑回归

非监督学习


可用数据集

scikit-learn

kaggle

UCI

数据集的结构包括 特征值+目标值

机器学习中,数据中有重复值不需要去重

特征工程

原始数据转换为更好地代表预测模型的潜在问题的特征的过程,提高预测准确性

数据的特征抽取

对文本等数据进行特征值化

sklearn是python一个库

import sklearn

sklearn.feature_extraction  特征抽取API

对字典数据进行特征值化

sklearn.feature_extraction.DictVectorizer

DictVectorizer(spqrse=True,...)

DictVectorizer.fit_transform(X)

X:字典或者包含字典的迭代器

返回值:返回sparse矩阵

DictVectorizer.inverse_transform(X)

X:array数组或者sparse矩阵

返回值:转换之前的数据格式

DictVectorizer.get_feature_names()

返回类别名称

DictVectorizer.transform(X)

按照原先的标准转换

可以使用 from sklearn.feature_extraction import DictVectorizer 导入

把字典中一些类别的数据,分别进行转换成特征;一些数值类型的数据,直接转换为数据

数组形式,有类别的这些特征,先要转换为字典数据

DictVectorizer(spqrse=False) 得到的是one-hot编码,把字典中类别的数据转换为one-hot编码,利于分析

文本特征抽取

对文本数据进行特征值化

sklearn.feature_extraction.text.CountVectorizer

CountVectorizer()

返回词频矩阵

CountVectorizer.fit_transform(X)

X:文本或者包含文本字符串的可迭代对象

返回值:返回sparse矩阵

CountVectorizer.inverse_transform(X)

X:array数组或者sparse矩阵

返回值:转换之前的数据格式

CountVectorizer.get_feature_names()

返回单词列表

可以使用 from sklearn.feature_extraction.text import CountVectorizer 导入

CountVectorizer()里面没有sparse,所以可以使用.toarray()实现该效果

统计文中所有词,重复的只看作一次,生成词的列表,然后对每篇文章,在词的列表里面统计每个词出现次数。单个字母不统计

文本特征抽取:Count 

因为分词默认是以逗号或者空格分词,所以对于一句中文,只能识别为一个词,使用jieba分词解决该问题

import jieba

jieba.cut("中文句子")

返回值:词语生成器

con1=jieba.cut("中文")   #分词

content1=list(con1)    #转换为列表

c1=' '.join(content1)   #把列表转换为字符串并以空格分开

单个汉字不会被统计

TfidfVectorizer

TfidfVectorizer(stop_words=None,...)

返回词的权重矩阵

TfidfVectorizer.fit_transform(X)

X:文本或者包含文本字符串的可迭代对象

返回值:返回sparse矩阵

TfidfVectorizer.inverse_transform(X)

X:array数组或者sparse矩阵

返回值:转换之前的数据格式

TfidfVectorizer.get_feature_names()

返回单词列表

可以使用 from sklearn.feature_extraction.text import TfidfVectorizer 导入

tf:term frequency  idf:逆文档频率 inverse document frequency

tf 词出现的次数

log(总文档数量/该词出现的文档数量)

tf*idf 该值越高,词的重要性越大

tf idf相比于上两种方式要好

数据的特征预处理

通过特定的统计方法,将数据转换成算法要求的数据

数值型数据:标准缩放:

1.归一化 2.标准化 3.缺失值

类别型数据:one-hot编码

时间类型:时间的切分

sklearn特征处理API sklearn.preprocessing

归一化

几个特征同等重要的时候,进行归一化,使得各个特征不会对最终结果造成更大的影响

通过对原始数据变换把数据映射到0-1之间

公式: {X}'= \frac{x-min}{max-min}      {X}''= {X}'*\left ( mx-mi \right )+mi

作用于每一列,max为一列的最大值,min为一列的最小值,那么{X}''为最终结果,mx mi分别为指定区间值,默认mx为1,mi为0

sklearn归一化API:sklearn.preprocessing.MinMaxScaler

MinMaxScaler(feature_range=(0,1)...)   每个特征缩放到给定范围(默认0-1)

MinMaxScaler.fit_trasform(X)

x:numpy array格式的数据 [n_samples,n_features]

返回值:转换后的形状相同的array

归一化缺点:如果有异常点,容易影响最大值最小值,鲁棒性不好,不稳定,只适合传统精确小数据场景

标准化

对原数据进行转换,把数据变到均值为0,方差为1的范围内

公式:{X}'=\frac{x-mean}{\sigma }   

作用于每一列,mean平均值,\sigma标准差

sklearn标准化API:sklearn.preprocessing.StandardScaler

StandardScaler(...)

处理之后每列所有数据都聚集在均值0附近,标准差为1

StandardScaler.fit_transform(X)

x:numpy array格式的数据[n_samples,n_features]

返回值:转换后形状相同的array

StandardScaler.mean_

原始数据中每列特征的平均值

StandardScaler.std_

原始数据中每列特征的方差

少量异常点对平均值和方差影响小,在样本足够多的情况下比较稳定,适合现代嘈杂大数据场景

缺失值

删除或者插补

插补更常用:常按特征值列的平均值、中位数填补

Imputer(missing_values='NaN',strategy='mean',axis=0)  axis=0是按列,1按行

完成缺失值插补

Imputer.fit_transform(X)

x:numpy array格式的数据[n_samples,n_features]

返回值:转换后形状相同的array

注意࿱

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值