神经网络与全连接

使用pytorch构建神经网络系列

第三章 第二节Neural Network


1.Cross Entropy

KL Divergence 反应了p和q两个分布的相似度,在我采用one-hot encoding时,H§就等于0,因此我们求交叉熵就是要求p分布和q分布的KL Divergence ,交叉熵越小说明p分布和q分布越相似,我们pred的值和真实值越相近。
在这里插入图片描述
例子
Binary Classification:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在pytorch中:
cross_entropy = softmax + log + nll_loss
避免Numerical Stability,直接使用cross_entropy
在这里插入图片描述

2.多分类问题实例

载入数据

import  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transforms
batch_size=200
learning_rate=0.01
epochs=10

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=batch_size, shuffle=True)

初始化参数,这边采用kaiming的初始化方式,能获得95%的准确率,如过没初始化好会出现梯度离散现象,loss直接不更新了

torch.nn.init.kaiming_normal_(w1)
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)

训练过程:

def forward(x):
    x = x@w1.t() + b1
    x = F.relu(x)
    x = x@w2.t() + b2
    x = F.relu(x)
    x = x@w3.t() + b3
    x = F.relu(x)
    return x
optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)
criteon = nn.CrossEntropyLoss()

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)

        logits = forward(data)
        loss = criteon(logits, target)

        optimizer.zero_grad()
        loss.backward()
        # print(w1.grad.norm(), w2.grad.norm())
        optimizer.step()

        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        logits = forward(data)
        test_loss += criteon(logits, target).item()

        pred = logits.data.max(1)[1]
        correct += pred.eq(target.data).sum()

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

3.全连接层 Fully connected

使用nn.Linear
import torch.nn as nn

在这里插入图片描述
使用ReLU激活函数:
在这里插入图片描述
新建一个神经网络层:
Step 1:
初始化

class MLP(nn.Module):

    def __init__(self):
        super(MLP, self).__init__()

Step 2:

class MLP(nn.Module):

    def __init__(self):
        super(MLP, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.ReLU(inplace=True),
            nn.Linear(200, 200),
            nn.ReLU(inplace=True),
            nn.Linear(200, 10),
            nn.ReLU(inplace=True),
        )

Step 3:

class MLP(nn.Module):

    def __init__(self):
        super(MLP, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.ReLU(inplace=True),
            nn.Linear(200, 200),
            nn.ReLU(inplace=True),
            nn.Linear(200, 10),
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        x = self.model(x)

        return x

Train

net = MLP()
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss()

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)

        logits = net(data)
        loss = criteon(logits, target)

        optimizer.zero_grad()
        loss.backward()
        # print(w1.grad.norm(), w2.grad.norm())
        optimizer.step()

4.激活函数与GPU加速

Tanh,Sigmoid
在这里插入图片描述
ReLU
在这里插入图片描述
Leaky ReLU
避免在x小于0的时候梯度为0
在这里插入图片描述在这里插入图片描述
SELU
在这里插入图片描述
softplus
在这里插入图片描述
使用GPU加速:

device = torch.device('cuda:0')
net = MLP().to(device)

在这里插入图片描述
Test:

test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        data, target = data.to(device), target.cuda()
        logits = net(data)
        test_loss += criteon(logits, target).item()

        pred = logits.argmax(dim=1)
        correct += pred.eq(target).float().sum().item()

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

5. Visdom可视化

lines: single trace
在这里插入图片描述
在这里插入图片描述
lines: multi-traces
在这里插入图片描述
visual data
在这里插入图片描述
在这里插入图片描述

6. Cross Validation and Regularization

避免过拟合
在这里插入图片描述
Reduce Overfitting
在这里插入图片描述
Regularization
约束参数复杂度,避免过拟合
在这里插入图片描述
在这里插入图片描述
L2-regularization:
在这里插入图片描述
L1-regularization:
在这里插入图片描述

7. Momentum

加入动量,让梯度更新冲出局部最优解,更能获得全局最优解
在这里插入图片描述
在这里插入图片描述

8.Learning rate tunning

在这里插入图片描述
Learning rate decay
使用动态学习率
在这里插入图片描述
schedule调用optimizer,管理learning rate
schedule.step 函数没调用一次就会监听一次loss,在一定次数内loss没发生变化会主动将learning rate 乘上一个系数例如0.5,使得lr减小

在这里插入图片描述

9. Early Stopping and Dropout

避免过拟合
在这里插入图片描述
How to do:
Validation set to select parameters
Monitor validation performance
Stop at the highest val perf.

Dropout
Learning less to learn better
在这里插入图片描述
在这里插入图片描述
两种dropout:
torch.nn.Dropout(p=dropout_prob)
tf.nn.dropout(keep_prob)

在做validation的时候不用dropout ,把所有神经元都用上,人为的切换到evaluation,提高表现:
在这里插入图片描述

参考:网易云课程
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值