Abstract
目标检测准确率在视觉退化场景下降严重。一个普遍的解决方法就是对退化图像进行增强然后再执行目标检测。但是,这是一种次优的方案,而且未必对目标检测的准确率有提升,因为图像增强和目标检测两个任务的不同。为了解决这个问题,我们提出了一种图像增强引导目标检测的方法,以端到端的方式定义了一个检测网络和一个额外的增强分支。具体来说,增强分支和检测分支以并行的方式组织,并设计了一个特征引导模块来连接这两个分支,这优化了检测分支中输入图像的浅层特征,使其与增强图像的浅部特征尽可能一致。由于增强分支在训练过程中被冻结,这样的设计起到了利用增强图像的特征来指导对象检测分支的学习的作用,从而使学习到的检测分支同时意识到图像质量和对象检测。测试时,删除了增强分支和特征引导模块,因此检测不需要额外的计算成本。
Introduction
通常,有三种方法可以将图像增强和目标检测任务结合在神经网络中。
- 首先训练图像增强网络,然后将增强后的图像作为输入来训练检测网络。
- 第二个以端到端的方式级联增强网络和检测网络
- 第三部分考虑了本文提出的两种网络并行方式。三种不同组合方式的流程图如图1所示。
对于第一种方法:已经被证明,增强后的图像并不能总是导致高级视觉任务的效果提升,例如目标检测,因为这两个独立任务的目标不同。
更多的努力在于第二种方式,将两个任务集成到端到端的网络中,并联合优化增强网络和目标检测网络。
我们提出了一种图像