目标检测论文:ThunderNet: Towards Real-time Generic Object Detection(arxiv2019)

ThunderNet:第一个实现了在ARM平台上的实时检测器和最快的单线程速度。

论文地址:https://arxiv.org/pdf/1903.11752.pdf
在这里插入图片描述
ThunderNet主要基于Shufflenet v2和Lighthead r-cnn改进,阅读ThunderNet前,建议对Shufflenet v2和Lighthead r-cnn有一定了解。
Shufflenet v2:Practical guidelines for efficient cnn architecture design
Lighthead r-cnn: In defense of two-stage object detector

1 算法思想

本文创新点颇多,而且很辅以充实的实验分析和对比。首先是整体架构如下图,整体的网络结构分为两部分:Backbone部分和Detection部分。网络的骨干部分为SNet,SNet是基于ShuffleNetV2进行修改得到的。 网络的检测部分,利用了压缩的RPN网络,修改自Light-Head R-CNN网络用以提高效率。 并提出Context Enhancement Module整合局部和全局特征增强网络特征表达能力。 并提出Spatial Attention Module空间注意模块,引入来自RPN的前后景信息用以优化feature map的特征分布。
在这里插入图片描述

2 主干部分(Backbone Part)

2-1 输入分辨率(Input Resolution)

ThunderNet采用的输入分辨率为320 * 320,主要是为了加快速度。同时作者通过实验分析,得出输入分辨率和主干网络应该相符( the input resolution should match the capability of the backbone),大分辨率小主干网络和小分辨率大主干网络都是不可取的。实验对比见表 4。
小的输入图片产生更小的feature maps 但是会导致严重的细节丢失,而且很难通过增大主干网络来修复;
另一方面,小的主干网络很难编码大的输入图片所包含的富裕信息。
在这里插入图片描述

2-2 主干网络(Backbone Networks)

作者认为骨干网络需要具有两大特点,第一:较大的感受野。第二:浅层特征位置信息丰富,深层特征区分度更大,因此Backbone Networks需要同时兼顾这两种特征

作者认为,ShuffleNetV1/V2限制了感受野。ShuffleNetV2 和MobileNetV2 缺乏浅层特征,而Xception 在计算预算低下的情况下缺乏深层特征。

基于此,作者对ShufflenetV2提出下列改进:

  1. 使用5×5 depthwise convolutions替换原来ShufflenetV2中所有的3×3 depthwise convolutions来增大感受野(从121 到 193 );
  2. 在SNet146 和 SNet535, 去除 Conv5 ,同时在浅层特征提取阶段加入更多通道以增加底层特征;
  3. 在SNet49中,压缩Conv5 的通道为 512,同时在浅层特征提取阶段加入更多通道,以便实现浅层和深层特征间更好的平衡;
    作者同时认为去掉Conv5,骨干网络就无法提取足够的信息。而且要是保留1024维度的Conv5层,骨干网络就会受到有限的浅层特征的影响。

提出了三种不同形式的SNet网络(见表 1),SNet49用于更快的推理,SNet535用于更好的精度,SNet146用于更好的速度/精度权衡。在这里插入图片描述

3 检测部分(Detection Part)

3-1 压缩RPN (Compressing RPN )

  1. .使用一个5×5 depthwise convolution 和一个256-channel 1×1 convolution取代原始RPN中256-channel 3×3 convolution,来增大感受野和编码更多信息;
  2. 采用5个尺度分别为 3 2 2 , 6 4 2 , 12 8 2 , 25 6 2 , 51 2 2 {32^{2}, 64^{2}, 128^{2},256^{2}, 512^{2}} 322,642,1282,2562,5122和5个长宽比分别为 1 : 2 , 3 : 4 , 1 : 1 , 4 : 3 , 2 : 1 {1:2, 3:4, 1:1, 4:3, 2:1} 1:2,3:4,1:1,4:3,2:1生成anchor boxes;

3-2 压缩检测头(Compressing Detection Head)

  1. 在 RoI warping前面的α × p × p channels的feature map 中使用α = 5 (p = 7)替换原来的α = 10 (p = 7);
  2. 使用PSRoI align代替RoI warping;
  3. R-CNN子网络使用1024维的全连接层,提高速度;

3-3 上下文增强模块(Context Enhancement Module)

Context Enhancement Module整合局部和全局特征增强网络特征表达能力。CEM融合来自三个尺度的特征图:C4,C5和Cglb(在C5上应用global average pooling得到的全局特征信息),见图 3。

  • C4:C4特征图上应用1×1卷积将通道数量压缩为α×p×p = 245
  • C5:C5进行2X上采样,C5特征图上应用1×1卷积将通道数量压缩为α×p×p = 245
  • Cglb:Cglb进行Broadcast ,Cglb特征图上应用1×1卷积将通道数量压缩为α×p×p = 245 。

CEM 增大感受野的同时,增强feature map的表达能力。因为CEM只有两个1*1卷积和一个全连接层,因此计算也很高效。
在这里插入图片描述

3-4 空间注意力模块(Spatial Attention Module)

Spatial Attention Module空间注意模块,通过引入来自RPN的前后景信息用以优化feature map的特征分布(前景信息多,背景信息少),见图 4。
SAM融合分别来自于CEM的 thin feature map和来自RPN的intermediate feature map 信息,SAM公式如(1)在这里插入图片描述
即,使用来自RPN的intermediate feature map 信息对CEM的 thin feature map信息加权编码(增强前景特征,抑制背景特征)。

4 实验结果

4-1 VOC数据集

在这里插入图片描述

4-2 MS COCO数据集

在这里插入图片描述

4-3 推断速度(Inference Speed)

在这里插入图片描述
速度真的很快呀。。。

  • 4
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值