字节跳动联邦学习平台Fedlearner:4个月落地开源,投放增效200%+

字节跳动的联邦学习平台Fedlearner自2019年底启动,今年初开源,已在电商、金融、教育等行业落地,显著提升投放效率和ROI。该平台支持多模式联邦学习,强调业务驱动,通过与客户合作,解决广告主痛点,实现数据安全下的建模优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1+1 如何大于 2 ?这个问题在不同场景中有不同的回答,在机器学习领域,答案是“联邦学习”。


2016 年,谷歌提出一种被称为「联邦学习」的机器学习框架——在保证数据安全的前提下,通过多方数据共同训练建模,将数据价值最大化。作为机器学习新范式,联邦学习为保证数据安全、打破数据隔离、深入挖掘数据价值提供了新的解决方案,在 B 端服务和优化广告投放、内容推荐等领域发挥着越来越大的效用。

字节跳动自 2019 年底启动了联邦学习平台 Fedlearner 的自研项目,Data、广告系统、商业产品、广告技术、专利、法务等多个团队通力合作,在今年初开源。平台支持多类联邦学习模式,整个系统包括控制台、训练器、数据处理、数据存储等模块,各模块对称部署在参与联邦的双方的集群上,透过代理互相通信,实现训练。

目前,Fedlearner 已经在电商、金融、教育等行业多个落地场景实际应用,并取得显著正向效果。

经过和项目团队的交流,今天,技术范儿要为大家呈现Fedlearner联邦学习平台的创建过程、优势亮点和未来挑战。

01

联邦学习落地广告领域

我们有独特优势

去年10月,字节跳动联邦学习平台 Fedlearner 项目启动。基于公司在推荐和广告领域拥有的机器学习建模技术积淀,团队决定以广告为切入点,探索联邦学习在广告场景中的落地。

“和市面上现有的一些联邦学习平台比起来,我们更清楚广告主的痛点在哪里,可以去做针对性地优化。”团队同学介绍说,在广告领域应用联邦学习,字节跳动优势明显。

我们的优势在于,是从做业务驱动出发的,会和广告主紧密配合,比如针对现有的投放有什么问题需要优化,基本上可以提出一对一的解决方案。

基于服务客户的平台定位,Fedlearner 的技术开发、客户合作和产品落地几乎从一开始就是同步推进的ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值