给论文增光添彩——常用局部自注意力方法总结

局部自注意力(Local Self-Attention)是一种在神经网络中用于捕捉输入数据局部区域内依赖关系的方法,特别在处理具有局部特征的重要性的任务(如图像处理和点云处理)中具有广泛应用。以下是一些常见的局部自注意力方法:

1. Window-based Self-Attention

这种方法将输入划分为多个不重叠的窗口,每个窗口内独立计算自注意力。例如,Swin Transformer(Shifted Window Transformer)在处理图像时,采用了滑动窗口机制,每个窗口内独立计算自注意力,随后在相邻窗口之间进行跨窗口连接。

2. Grid-based Self-Attention

这种方法将输入划分为网格,每个网格单元内计算自注意力。例如,Deformable DETR中的Deformable Attention模块,将空间划分为网格,并在每个网格单元内进行自适应关注,显著提高了处理效率和精度。

 3. Local Context Attention

这种方法在计算注意力时,只考虑局部邻域的点或像素。例如,在点云处理中,PointNet++引入了局部区域中的自注意力机制,通过分层次聚合局部特征来增强对局部几何结构的捕捉。

4. Sparse Self-Attention

这种方法通过限制自注意力计算的范围,使其仅在局部邻域内进行。例如,Sparse Transformer在处理稀疏数据(如点云)时,仅计算相邻点之间的注意力,从而减少计算复杂度。

5. Hierarchical Self-Attention

这种方法通过分层次的方式计算注意力,从低层次的局部到高层次的全局。例如,HRNet在处理图像时,先在局部进行自注意力计算,然后逐层合并更大范围的特征。

 6. Graph-based Local Attention

在图结构数据中,通过定义局部邻域的方式计算自注意力。例如,Graph Attention Networks (GAT)使用图卷积的方式在局部节点之间计算注意力,从而捕捉图中局部结构信息。

实例解释:
1. Swin Transformer:
方法:输入图像被分割成不重叠的窗口,窗口内独立计算自注意力。每个阶段,窗口位置会发生偏移(shift),以实现跨窗口的连接。
优点:提高了计算效率,增强了局部特征捕捉能力。

2. PointNet++:
方法:在点云处理中,先将点云划分为局部区域,然后在每个区域内计算自注意力,通过多层次聚合局部特征。
优点:能够有效捕捉点云的局部几何结构,提升点云处理的精度。

3. Sparse Transformer:
方法:在处理稀疏数据时,仅计算相邻点之间的注意力,而不是全局计算,减少了计算复杂度。
优点:适合处理稀疏数据,显著提高了计算效率。

这些局部自注意力的方法在不同领域中应用广泛,针对特定任务的需求,选择合适的方法能够显著提升模型的性能和效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值