论文解读6——Semi-Supervised Classification With Graph Convolutional Networks(GCN)

最近想学习一下图神经网络,发现了这篇关于图卷积的文献,初读的时候发现里面涉及了很多没学过的数学理论,于是又去恶补了一下度矩阵、邻接矩阵、拉普拉斯矩阵、图傅里叶变换、谱图理论到底是什么东西,把能看懂的部分整理如下

在这里插入图片描述

1、文章贡献

提出了一种基于图结构的半监督学习方法GCN,解决CNN无法处理不规则数据的问题,通过谱图卷积的局部一阶近似将卷积操作应用到图结构等不规则的数据中进行半监督分类。

2、数学理论

2.1 图

图表示为G=(V,E),其中V为顶点,E为边。图表示为数据之间的关系,根据节点的边是否有方向可分为无向图和有向图。(该篇文献GCN是基于无向图,因为拉普拉斯矩阵在无向图中是对称的,才可以特征分解)

2.2 邻接矩阵

邻接矩阵表示节点之间的关系,其中无向图的邻接矩阵是对称阵。通俗来讲,节点之间有连接关系,邻接矩阵中对应元素就为1,否则为0

2.3 度矩阵

度矩阵是一个对角矩阵,对角线元素为对应节点连接边的数量,即邻接矩阵对应行元素求和

2.4 拉普拉斯矩阵

拉普拉斯矩阵L=度矩阵D-邻接矩阵A

  • 普通的拉普拉斯矩阵
    在这里插入图片描述
  • 对称归一化的拉普拉斯矩阵
    在这里插入图片描述
    在这里插入图片描述

  • 在这里插入图片描述

2.5 图傅里叶变换

傅里叶变换理论太复杂了,这里就通俗地讲讲图傅里叶变换的理解。
一句话概括图傅里叶变换就是:将空域的信号通过图傅里叶变换到频域中,与卷积核进行相乘后,将结果逆变换回空域中。(相当于在空域中进行了卷积,因为空域不能直接对图结构数据卷积)

3、GCN算法原理

GCN是谱图卷积的一阶局部近似,仅依赖距离中心节点k步距离之内的节点,每个卷积层处理一阶邻域信息,通过堆叠多个卷积层实现处理多阶邻域信息。

  • 传播公式
    在这里插入图片描述

推导

  • 谱图卷积: 将拉普拉斯矩阵对称归一化后分解得到的特征向量作为傅里叶变换的基,通过傅里叶变换将输入信号变换到频域,与卷积核相乘后将结果逆变换回空域(其中卷积核是拉普拉斯矩阵的特征值组成的对角阵)——特征分解计算复杂度大
  • 改进: 针对上述计算复杂度问题,用切比雪夫多项式进行k阶逼近来改进卷积核,阶数由原来的n降为k,减少计算复杂度
  • GCN简化: 在以上基础上进一步将切比雪夫多项式做一阶近似并进一步简化参数得到最终GCN模型
    在这里插入图片描述

4、实验

  • 跟先前其他baseline进行对比
    在这里插入图片描述
  • 将谱图卷积每一步推导过程分别实验比较
    在这里插入图片描述
  • 附录中提到将未经训练的随机初始化的三层GCN应用在一个俱乐部网络中,提取的特征也已相当优秀
    在这里插入图片描述
  • 当对每个类使用一个标签训练后,迭代过程实现了类别分离
    在这里插入图片描述
  • 尝试更深层数并考虑残差连接,发现GCN最好的效果在2、3层,而且超过7层之后如果不使用残差连接会使训练变得困难,层数过多会出现过平滑和过拟合的问题
    在这里插入图片描述

关于过平滑的问题在这篇2018年的《Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning》中有给出证明

  • 首先定义一个拉普拉斯平滑函数(其中γ位于0到1之间控制自身节点和邻居节点之间的权重)
    在这里插入图片描述
    将函数表示成矩阵的形式
    在这里插入图片描述
    令γ=1 即只考虑邻居节点的特征,并将归一化的拉普拉斯矩阵替换为对称后得
    在这里插入图片描述
    即:图卷积是拉普拉斯平滑的特殊形式
    通过一次平滑可以让同类的节点特征变得相似,从而容易分类
  • 但是层数过深会出现过平滑现象,最后所有特征收敛到同一个值,导致分类困难
    在这里插入图片描述

5、GCN局限

1、内存需求大,很难应用在大图上
2、基础GCN基于的无向图,无法捕捉节点外的边缘信息
3、邻接矩阵添加自环时假设各节点同等重要,没有考虑不同权重
4、GCN在层数过深时会出现过平滑问题,导致分类困难

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 半监督分类是指利用同时带有标记和未标记数据的分类方法。这种方法旨在利用未标记数据来帮助提高分类器的性能,从而减少需要标记数据的数量。通常,半监督分类通过利用未标记数据的分布信息来构建分类器,并且这种方法在许多实际应用中都取得了很好的结果。 ### 回答2: 半监督分类,是指利用一部分数据进行有监督学习,以此来提高整个数据集的分类性能的方法。相较于全监督学习,半监督学习允许在训练过程中使用未标记的数据,只需要有一定数量的标记数据就可以实现高效的分类任务。 半监督分类的基础是“同分布假设”,即未标记的数据与标记数据属于同一分布。该假设基于一个假设性的结果:在标记和未标记的数据中,存在一些潜在的相似性。由此,使用未标记数据训练模型应当能够提高分类性能。 半监督分类主要有两种方法,主动学习和自我训练。主动学习依靠人类专家指导,根据样本的不确定性选择新的样本添加到训练集中,从而提高整体的性能。自我训练则是从已标记的样本中训练分类器,然后将分类器应用于未标记的样本,将那些分类器能够高置信度的样本添加到已标记集合中,不断迭代以提高性能。 半监督分类的应用广泛,特别是在文本分类、图像分类、目标检测等领域中。由于标记数据的难以获取和昂贵的成本,半监督分类显得尤为重要。它不仅能够提高分类性能,而且提高了数据利用效率。虽然使用未标记的数据可能会带来一定的风险,但正确地使用半监督分类方法将提高训练效果,并使其比单纯的有监督学习更加稳健和可靠。 ### 回答3: 半监督分类(Semi-supervised Classification)是一种机器学习中的作业,它使用一小部分有标签的数据和大量未标记的数据来训练模型,从而进行分类。半监督分类主要是因为标记数据很昂贵或难以获取,因此利用未标记的数据来增强模型的学习能力。 通过半监督分类算法,可以把未标记的数据加入到模型训练过程中,从而提高模型的准确性和分类效果。在半监督分类中,未标记数据的利用对于模型的效果至关重要。因此,需要使用一些优秀的技术来处理未标记数据,例如半监督学习常用的技术,包括基于图的算法、核方法、自编码器等等。 半监督学习的优点是可以使用很少的有标签数据来训练模型,从而节省时间和成本。此外,半监督学习还可以提高模型的复杂性,从而提高模型的泛化能力。在实际应用中,半监督学习算法已经得到广泛应用,例如图像分类、文本分类、视频分类等等。 总之,半监督分类是一种重要的机器学习技术,通过利用未标记的数据来提高模型的学习能力,从而提高模型的准确性和分类效果。未来半监督学习算法还将得到越来越广泛的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值