3.《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》论文理解

《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》 中,作者对《Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering》
作出了改进,提出了以下创新:
(1)提出了一个可以直接在图上操作的神经网络模型的逐层传播规则;
(2)证明了这种形式的图卷积网络怎样在图上实现半监督的节点分类;

1.神经网络模型的逐层传播规则
卷积公式的频域表示:
g ∗ x = U g θ U T x (1) g*x=Ug_{\theta}U^{T}x\tag{1} gx=UgθUTx(1)

定义 L L L为对称归一化图拉普拉斯矩阵, L = I N − D − 1 2 A D − 1 2 = U Λ U T L=I_{N}-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}=U\Lambda U^{T} L=IND21AD21=UΛUT, A A A是无向图的邻接矩阵(可以是二值,也可以是权值) D i i = ∑ j A i j D_{ii}=\sum_{j}{A_{ij}} Dii=jAij是图的度矩阵。 U U U L L L特征向量矩阵。 L L L的特征值范围为[0,1]。
由论文《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》得到,式(1)可以推导为:
g θ ′ ( Λ ) ≈ ∑ k = 0 K θ k ′ T k ( Λ ~ ) (2) g_{\theta^{'}}(\Lambda) \approx \sum_{k=0}^{K}{\theta_{k}^{'}}T_{k}(\tilde\Lambda)\tag{2} gθ(Λ)k=0KθkTk(Λ~)(2)

其中 Λ ~ = 2 λ m a x Λ − I N \tilde\Lambda=\frac{2}{\lambda_{max}}\Lambda-I_{N} Λ~=λmax2ΛIN, θ ′ ∈ R K \theta^{'}\in R^{K} θRK是切比雪夫系数。得到: g ∗ x ≈ ∑ k = 0 K θ k ′ T k ( L ~ ) x g*x \approx \sum_{k=0}^{K}{\theta_{k}^{'}}T_{k}(\tilde L)x gxk=0KθkTk(L~)x,其中 L ~ = 2 λ m a x L − I N \tilde L=\frac{2}{\lambda_{max}}L-I_{N} L~=λmax2LIN L ~ \tilde L L~的特征值范围为[-1,1]。
当使用 K = 1 K=1 K=1时,式(2)在频域变为线性函数,即:
g ∗ x ≈ θ 0 ′ x + θ 1 ′ ( 2 λ m a x L − I N ) x (3) g*x\approx \theta_{0}^{'}x+\theta_{1}^{'}(\frac{2}{\lambda_{max}}L-I_{N})x\tag{3} gxθ0x+θ1(λmax2LIN)x(3)

λ m a x ≈ 2 \lambda_{max}\approx2 λmax2,则
g ∗ x ≈ θ 0 ′ x + θ 1 ′ ( L − I N ) x = θ 0 ′ x − θ 1 ′ ( D − 1 2 A D − 1 2 ) x (4) g*x\approx \theta_{0}^{'}x+\theta_{1}^{'}(L-I_{N})x=\theta_{0}^{'}x-\theta_{1}^{'}(D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x\tag{4} gxθ0x+θ1(LIN)x=θ0xθ1(D21AD21)x(4)

由于 θ 0 ′ , θ 1 ′ \theta_{0}^{'},\theta_{1}^{'} θ0,θ1是训练参数,是可调整的,使得 θ 0 ′ = − θ 1 ′ = θ \theta_{0}^{'}=-\theta_{1}^{'}=\theta θ0=θ1=θ,那么
g ∗ x ≈ θ ( I N + D − 1 2 A D − 1 2 ) x (5) g*x\approx \theta(I_{N}+D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x\tag{5} gxθ(IN+D21AD21)x(5)

I N + D − 1 2 A D − 1 2 I_{N}+D^{-\frac{1}{2}}AD^{-\frac{1}{2}} IN+D21AD21的特征值范围为[0,2],可能会导致梯度消失和梯度爆炸的问题,将 I N + D − 1 2 A D − 1 2 I_{N}+D^{-\frac{1}{2}}AD^{-\frac{1}{2}} IN+D21AD21再次归一化为 D ~ − 1 2 A ~ D ~ − 1 2 \tilde D^{-\frac{1}{2}}\tilde A\tilde D^{-\frac{1}{2}} D~21A~D~21,其中, A = ~ A + I N A\tilde = A+I_{N} A=~A+IN, D ~ i i = ∑ j A ~ i j \tilde D_{ii}=\sum_{j}\tilde A_{ij} D~ii=jA~ij,可以有效的避免这个问题,同时由于 θ \theta θ为一个数,可以放到等式的最后,得到:
g ∗ x ≈ ( D ~ − 1 2 A ~ D ~ − 1 2 ) x θ (6) g*x\approx(\tilde D^{-\frac{1}{2}}\tilde A\tilde D^{-\frac{1}{2}})x \theta\tag{6} gx(D~21A~D~21)xθ(6)

当信号 x x x为多通道信号 X ∈ R N × C X\in R^{N×C} XRN×C时,并且使用 F F F个卷积核,使得每个输出节点的通道数为 F F F,则:
Z = ( D ~ − 1 2 A ~ D ~ − 1 2 ) X Θ (7) Z=(\tilde D^{-\frac{1}{2}}\tilde A\tilde D^{-\frac{1}{2}})X\Theta\tag{7} Z=(D~21A~D~21)XΘ(7)

C C C为输入节点的通道数, F F F为输出节点的通道数,同时也是卷积核数目; Θ ∈ R C × F \Theta \in R^{C×F} ΘRC×F为这 F F F个卷积核的参数。

2.半监督的节点分类
D ~ − 1 2 A ~ D ~ − 1 2 = A ^ , Θ = W \tilde D^{-\frac{1}{2}}\tilde A\tilde D^{-\frac{1}{2}}=\hat A,\Theta=W D~21A~D~21=A^Θ=W,则两层的图卷积分类网络可以表示为:
Z = f ( X , A ) = s o f t m a x ( A ^   R e L U ( A ^ X W ( 0 ) ) W ( 1 ) ) (8) Z=f(X,A)=softmax(\hat A\ ReLU(\hat AXW^{(0)})W^{(1)})\tag8 Z=f(X,A)=softmax(A^ ReLU(A^XW(0))W(1))(8)
在这里插入图片描述
需要说明的是,一个图就是一个样本,每个样本在逐层传播的过程中认为 A ^ \hat A A^是一样的,也就是说每层中 A ^ \hat A A^是共享的。 s o f t m a x ( x i j ) = e x p ( x i j ) ∑ j e x p ( x i j ) softmax(x_{ij})=\frac{exp(x_{ij})}{\sum_{j}exp(x_{ij})} softmax(xij)=jexp(xij)exp(xij) i ∈ [ 1 , N ] , j ∈ [ 1 , F ] , x i ∈ R 1 × F i \in [1,N],j \in [1,F],x_{i} \in R^{1×F} i[1,N],j[1,F],xiR1×F表示两层卷积后输出 ( R N × F ) (R^{N×F}) (RN×F)的第 i i i行。交叉熵为 L = − ∑ l ∈ Y L ∑ f = 1 F Y l f l n Z l f L=-\sum_{l\in Y_{L}}\sum_{f=1}^{F}Y_{lf}lnZ_{lf} L=lYLf=1FYlflnZlf,其中 Y L Y_{L} YL是有标签节点的集合。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很抱歉,根据提供的引用内容,我无法提供关于"SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS"代码的信息。引用的内容主要介绍了图上结点分类的半监督问题以及相关的研究方法和改进。如果您需要获取该代码,建议您查阅相关的学术论文或者在开源代码平台上搜索相关的项目。 #### 引用[.reference_title] - *1* [Semi-supervised classification with graph convolutional networks](https://blog.csdn.net/weixin_41362649/article/details/113232898)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Kipf-GCNSemi-Supervised Classification With Graph Convolutional Networks论文详解](https://blog.csdn.net/u012762410/article/details/127177181)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Semi-Supervised Classification with Graph Convolutional Networks](https://blog.csdn.net/m0_37924639/article/details/124884547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值