本文仅从本人复习需要出发:作为对首都师范大学冉仕举老师课程内容的整理、归纳以及补充
课程详情:张量网络PyThon编程:3.4 量子线路模块化编程(a) ADGate类_哔哩哔哩_bilibili
冉仕举老师本人空间:StringCNU的个人空间_哔哩哔哩_bilibili
详见上一讲:最小代数本征值问题,以及其对应的本征态。有明确的统计意义。
当Srodinger-Equation 的 空间部分可以分离出来,:
将算符的积分写成黎曼和的形式,固定每个切片,布置一系列门,该层门当中H 视作不变
事实上,算符的指数求和并不能严格等价成简单的连乘形式,会引入Trotter 误差。
以下摘录了 P73-P76,对 Trotter 误差的 推导:
(1)编时乘积传播子:
(2)对于每层传播子:
(3)连乘 -演化算符的差距:也类似 : \tau * H 的求和 - 连乘,累加为:
(4)Trotter 误差大概就是举AB两个简单的例子描述这种连乘-指数累加的差距:
,故整套含时演化下来,误差控制可以控制在
同理,我们可以用有限步骤,将演化算符邻接交换,stairs - bricks 结果相差,brick更紧凑
值得一提的是,令 ,演化算符写成
:
* 对着参数演化到 ,
:
* 系统会落到基态上,
但毕竟没有可能实现 ,找出出现不动点的地方:
同时要观察到演化算符| | < 1,属于压缩映射:
* 我们称之为虚时演化。 直接(整块地)计算 的虚时演化,每层复杂度~
,
* 因此:每层还是考虑和原有含时演化一样布置门,
只是 ,就可以用来计算基态了!