多体计算讲习班(Lecture Ⅶ - DMRG(White))

# DMRG:不依赖MPS的最初版本,利用纠缠特征(约化密度矩阵)

# 比较好用的程序包:iTensor,TeNPy

# 直接进行参考:Simple-dmrg, Sophisticated-dmrg, dmrg-101-Tutorial

# 比较好的参考文献:

(1)最初版本(2)化学应用(3)基于MPS       

# 精确对角化(ED),量子蒙卡(QMC):

ED:精确对角化的极限是48格点系统

QMC:遇到负符号问题 ~ METTs产生低纠缠态缓解负符号,DMRG,TRG截断修复近似

# 统计物理的重整化:

Block spin RG for Ising Model ( Leo Kadanoff )


# NRG:【Truncation,keep only some of the basis 】

怎样做:(1)With the Projrction H'_mn =  <m|H|n>,(2)倍增=>截断=>倍增=>截断......

     

据说Konda 杂质模型算的不错,然而Heisenberg模型不行了,不符合Wilson-Chain: 

       

直观点讲:波函数分块可以引入节点,不能回复到原来的一整个基态波函数,会偏移到低激发态

好在 Wilson-chain 是一种 Mapping的结果 几乎就是 独立格点 构成的,关联被忽略掉影响不大


# DMRG(0) - size 的 生长:【利用纠缠来优化关联,约化密度矩阵】

怎样做:(1)长 ‘点 ’(2)合理截断(纠缠,而非能级截断)  

    

=> 最小纠缠生长 2-Sites:d x D ~ d^2 x D^2

=> 精确对角化ED:H最低本征矢, 最低本征值

(这个时候可适当插入可以忍受的ED,来监测基态迭代稳态)

=> Tr_env(d^2 x D^2), Tr_sys(d^2 x D^2),获得约化密度矩阵

 ~  截断:\Psi\Psi* SVD保留前m;\Psi*\Psi SVD保留前m;

 ~  区别:纠缠截断,而不是全体能级截断。 

=> 各自截断保留 num_dimension = m => d x m ~ d^2 x m^2 

部分求Trace 相当于 考虑到了块之间的关联。至于截断损失修复,在finite系统里可以用sweep

进一步优化基态收敛


# DMRG(1) - sweeping:【修复Env-Sys态的截断损失】

怎样做:(1)从Env不断释放2-sites,Sys吸收1-site 保留更大截断维数到M1(2)redo Sys;

   

=> 生长:SuperBlock_B.Env - 1~ 调用生长到N/2步骤版本;SuperBlock_A.Sys + 1~ 吸收1-Site

=> 修复性截断:Tr_SuperBlock_A.Sys(d^2 x D^2), \Psi\Psi* SVD保留前M1 (M1>M) , 一直到N-3 

=> Redo Sys

SuperBlockState_B.Env 不断释放单格点是调用生长缓存,允许A.Sys跟尚无因本次裁剪引入更多损失的B.Env保持耦合情况下保留更多态M1;Redo Sys 做的是将AB互换做一样的事情。

第一次Sweep为Sys提供了各个长度的修复副本;NumSweep>2就能获得不错的精度


# DMRG 除计算基态以外的更多应用:

    (0)配分函数

    (1)关联函数

    (2)Quasi - 1D

    (3)


# DMRG 更多发展:

    (0)vMPS - TEBD - TDVP(AKLT 模型 到 MPS)

    (1)动量空间重整化

    (2)含时演化重整化

    (3)转移矩阵重整化

    (4)频域空间重整化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值