PTA 6-1 在一个数组中实现两个堆栈 (20分)
问题描述:
本题要求在一个数组中实现两个堆栈。
函数接口定义:
Stack CreateStack( int MaxSize );
bool Push( Stack S, ElementType X, int Tag );
ElementType Pop( Stack S, int Tag );
其中Tag是堆栈编号,取1或2;MaxSize堆栈数组的规模;Stack结构定义如下:
typedef int Position; struct SNode {
ElementType *Data;
Position Top1, Top2;
int MaxSize; }; typedef struct SNode *Stack;注意:如果堆栈已满,Push函数必须输出“Stack Full”并且返回false;如果某堆栈是空的,则Pop函数必须输出“Stack
Tag Empty”(其中Tag是该堆栈的编号),并且返回ERROR。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
#define ERROR 1e8
typedef int ElementType;
typedef enum { push, pop, end } Operation;
typedef enum { false, true } bool;
typedef int Position;
struct SNode {
ElementType *Data;
Position Top1, Top2;
int MaxSize;
};
typedef struct SNode *Stack;
Stack CreateStack( int MaxSize );
bool Push( Stack S, ElementType X, int Tag );
ElementType Pop( Stack S, int Tag );
Operation GetOp(); /* details omitted */
void PrintStack( Stack S, int Tag ); /* details omitted */
int main()
{
int N, Tag, X;
Stack S;
int done = 0;
scanf("%d", &N);
S = CreateStack(N);
while ( !done ) {
switch( GetOp() ) {
case push:
scanf("%d %d", &Tag, &X);
if (!Push(S, X, Tag)) printf("Stack %d is Full!\n", Tag);
break;
case pop:
scanf("%d", &Tag);
X = Pop(S, Tag);
if ( X==ERROR ) printf("Stack %d is Empty!\n", Tag);
break;
case end:
PrintStack(S, 1);
PrintStack(S, 2);
done = 1;
break;
}
}
return 0;
}
/* 你的代码将被嵌在这里 */
/* 请在这里填写答案 */
输入样例:
5
Push 1 1
Pop 2
Push 2 11
Push 1 2
Push 2 12
Pop 1
Push 2 13
Push 2 14
Push 1 3
Pop 2
End
输出样例:
Stack 2 Empty
Stack 2 is Empty!
Stack Full
Stack 1 is Full!
Pop from Stack 1: 1
Pop from Stack 2: 13 12 11
解析思路:
用一个数组实现两个栈,前面一个栈后面一个栈,从数组的两端向中间移动,实现两个栈的效果。
答案:
Stack CreateStack( int MaxSize )
{
struct SNode *S=NULL;
S=(struct SNode *)malloc(sizeof(struct SNode));
S->Data=(int *)malloc(MaxSize*sizeof(int));
S->Top1=-1;
S->Top2=MaxSize;
S->MaxSize=MaxSize;
return S;
}
bool Push( Stack S, ElementType X, int Tag )
{
if(S->Top2-S->Top1==1)
{
return false;
}
else
{
if(Tag==1) S->Data[++(S->Top1)]=X;
else if(Tag==2) S->Data[--(S->Top2)]=X;
return true;
}
}
ElementType Pop( Stack S, int Tag )
{
if(Tag==1)
{
if(S->Top1==-1)
{
return ERROR;
}
else return S->Data[(S->Top1)--];
}
else if(Tag==2)
{
if(S->Top2==S->MaxSize)
{
return ERROR;
}
else
{
return S->Data[(S->Top2)++];
}
}
}