Ubuntu上利用IntelliJ IDEA通过maven自动拉取hadoop依赖实现mapreduce中的WordCount
本文是关于idea实现mapreduce中的WordCount,主要是讲解如何在在idea中开发Hadoop程序以及打包jar包,上传到Hadoop集群中运行
1.在Idea中创建maven项目
这里随便填一下就可以了
这是一开始的目录
可以看到生成了一个pom.xml文件,这是我们接下来用于自动导入Hadoop依赖的jar包的重要文件
2.修改pom.xml文件以便工程自动导入Hadoop依赖
在该文件的
<dependencies>
和</dependencies>
之间加入上面的代码段
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.7.1</version>
</dependency>
接着需要右击pom.xml文件,选择maven→Download Sources and Docementation
当然在下载好之后需要点击import Changes
等待下载好之后,我们就可以开始编写代码了
3.编写词频统计算法
在src/main/java
目录下创建三个类,分别为:
WCMapper
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WCMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.将文本转化成字符串
String line = value.toString();
//2.将字符串切割
String[] words = line.split("\\s+");
//3.循环遍历,将每一个单词写出去
for (String word : words) {
k.set(word);
context.write(k,v);
}
}
}
WCRducer
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WCReducer extends Reducer< Text,IntWritable,Text, IntWritable> {
IntWritable v = new IntWritable();
int sum;
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//reduce端接收到的类型大概是这样的 (wish,(1,1,1,1))
//对迭代器进行累加求和
//sum必须赋值为0初始化,因为reduce方法是每个键都会执行一次
sum=0;
for (IntWritable count : values) {
sum+=count.get();
}
v.set(sum);
//将key和value进行写出
context.write(key,v);
}
}
WCDriver
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WCDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.创建配置文件,创建Job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf,"wordcount");
//2.设置jar的位置,参数为本类类名.class
job.setJarByClass(WCDriver.class);
//3.设置map和reduce的位置
job.setMapperClass(WCMapper.class);
job.setReducerClass(WCReducer.class);
//4.设置map输出端的key,value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//5.设置reduce输出的key,value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//6.设置输入和输出路径,输入的是本地自己建的txt文件,会输出一个test目录
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
//7.提交程序运行
boolean result = job.waitForCompletion(true);
System.exit(result?0:1);
}
}
4.打包jar包
之后我们需要右击项目找到Open Module Settings
找到Artifacts→JAR→From modules with dependencies…
找到主类WCDriver
在主页面找到Build → Build Artifacts→Build
之后我们可以发现目录树中出现了一个out目录,在字树文件中有一个
mypro.jar
文件,这个就是我们打包的文件
5.将打包的jar文件上传到hdfs
hdfs dfs -put 虚拟机本地jar包存储完整路径 hdfs文件系统存储的路径
6.利用Hadoop集群运行该jar包
hadoop jar 项目名.jar 输入目录 输出目录
ps:需要注意的是,这里的输入目录就是我们需要统计词频的文件目录,而输出目录是mapreduce计算后输出的结果
7.演示
这是需要统计词频的文件
这是写入命令后,mapreduce开始执行任务
查看输出后的文件