高数 | 定理及性质证明 | 为什么凹凸区间,单调区间不能并起来?因为一杯水不能灌满。

博客讨论了数学中函数单调区间和凹凸区间的概念。举例说明,单调函数的区间不能简单地用'并'来连接,因为函数在分界点可能不保持单调性。同样,凹凸区间也不能随意合并,因为它们在交界处可能不满足凹凸性定义。建议在描述这些性质时使用'和',以避免错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.举例子:单调区间

很显然f(x)在(-无穷,0),和(0,+无穷)上都是减函数
如果改成"并",根据单调减函数的定义
设区间D

 应该满足上述

设x1=1,x2=-1
很显然不满足.
也就是说.跨过分界点的时候.函数不一定是单调的.
在这个例子的表现中就是.在0左右分别都是单调递减的.但在0附近.从 负数 变到了 正数 .

2.举例子:凹凸区间

凹区间.

先看凹函数定义.

设f(x)在I上为凹函数.则:

红色为这个分段函数图像及函数表达式.点P为h(x)和q(x)分界点.

显然粗红线f(x)和q(x)在各自的定义域内为凹函数.A B分别为这两函数上的两点.

M为AB中点.MC垂直于x轴.

显然M的纵坐标值小于C的纵坐标值.

这个就更明显了.各区间内都是凹函数.但"并"起来不满足定义.

综上所述.凹凸区间不能用"并",所以,老话..写"和"就好.


答题的时候.写"和"是不会有错的.写"并"有可能会错(用单调函数的定义来判断). 所以碰到单调区间写"和"就好了,不需要再去判断.

摘录于凹凸区间有2个或以上可以用"并"符号么 为什么 类比单调区间就不可以,那个又是为什么来 - 雨露学习互助

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值