高数 | 【极限与等价无穷小】等价无穷小量的替换及加减替换条件

可以和这一篇配合食用。

高数 | 复合函数等价无穷小经典错误 & 两个重要极限 & 什么情况下求极限可以直接带入_西皮呦的博客-CSDN博客

一、等价无穷小量的替换的基础知识

1.定义[1]

我们都蛮喜欢用等价无穷小量的替换的,因为在记下了常见的等价无穷小量之后,这种方法我们基本不用复杂的计算。

如果用洛必达法则,我们就要算很长的时间。

2.用等价无穷小量的注意事项

但用等价无穷小量的替换需要特别注意两点(常出错的两点)

①被替换的量,必须是无穷小量(在取极限时为0)。

②被替换的量,必须是作为被乘或被除的元素,不能是被加减的元素。

③替换时必须整体替换,而不能替换局部

整体替换是什么意思呢?

其实等价无穷小量的替换,我们可以看做是原极限乘以一个极限为1的

整体替换,就是要对整个求极限的式子乘1。

这一点其实是很多人不容易注意到的。


二、深层的去理解等价无穷小量的替换

1.等价无穷小量和泰勒展开式的联系

泰勒展开式:

注:这里只写x=0处的泰勒展开,仅仅是因为懒。

我们用泰勒展开式,来对函数在一点附近的函数进行近似,近似式的阶数越高,近似程度越好。

都是近似,等价无穷小量和泰勒展开的关系是什么呢?

无穷小量的等价,不过取了泰勒展开式的第一项去等价罢了。

等价无穷小量就是精度较低的泰勒展开。

仅仅从做题的角度来说,就是你能用等价无穷小量去做的题,用泰勒展开一定可以,但反过来未必。

我们用泰勒展开的方法做一下上面的例3:

2.为什么加减时我们一般不用等价无穷小量的替换

我们清楚了等价无穷小量和泰勒展开之间的关系之后,这个问题的答案我们很容易得到。

为什么加减不行?

本质是因为加减可能会导致项的抵消,抵消后,根据分母的阶数可能会需要泰勒展开第一项后的高阶近似,但因为等价无穷小量只取了泰勒展开的第一项,对后续的近似无能为力。

 

3.为什么乘除时可以无顾忌的用等价无穷小量的替换?

那为什么乘除可以呢?

因为乘除不会消去第一项近似,你等价的那个无穷小量(即泰勒展开的第一项)总会在,在就意味着轮不到你后面的高阶近似上场。

这个时候,我不需要你分子的等价无穷小量一直等价到和分母相同。

 4.什么时候可以在加减中用等价无穷小量的替换?

知道为什么不能用,那什么时候能用就很简单了——我们不让相加减的两个函数的泰勒展开式的第一项(等价的无穷小量)消去就可以了呗。

 证明如下

举例:


摘录于 “等价无穷小量的替换”的详析 - 知乎

 


摘录于 【图片】y=sin1/x的总结【高等数学吧】_百度贴吧

<think>好的,用户的问题是关于等价无穷小代换在极限中的应用以及相关的数学公式。首先需要明确等价无穷小的定义和适用条件。当x趋近于某个点,比如0时,如果两个无穷小量α和β满足lim α/β=1,那么它们就是等价的,记作α~β。常见的等价无穷小有sinx~x,tanx~x,ln(1+x)~x,e^x-1~x等。 接下来要整理等价无穷小代换的使用规则。用户可能想知道在什么情况下可以进行代换,比如乘除运算中可以直接替换,但加减运算中通常不能直接使用,否则可能导致错误。例如,在极限lim(x→0) (sinx - x)/x^3中,若直接替换sinx为x,会得到0,但实际上正确答案是-1/6,这时候就需要用泰勒展开而不是简单的代换。 然后需要收集些典型例题,展示正确的应用方法。例如计算lim(x→0) (tanx - sinx)/x^3,可以先将tanx替换为x,sinx替换为x,但这样会导致错误,正确的做法是使用更精确的泰勒展开,或者将表达式变形为sinx(1 - cosx)/x^3cosx,再利用等价无穷小代换1 - cosx~x²/2。 还需要注意常见的误区,比如在加减法使用代换可能导致错误结果,这时候需要强调适用的条件。同时,高阶无穷小的处理也是关键,比如在乘积中高阶无穷小可以忽略,但在和差中不能随意省略。 最后,要确保回答中正确使用数学公式的格式,行内公式用$包裹,独立公式用$$,并且代码块如果有的话要用三个反引号注明语言。检查是否符合用户的所有要求,包括分步骤、避免使用人称和步骤词汇,以及最后生成相关问题。相关问题需要基于用户的原问题,比如等价无穷小条件加减法中的错误例子,以及泰勒展开的关系等。</think>当 $x \to 0$ 时,等价无穷小代换是求解极限的重要工具。以下是关键知识点和典型应用: **、基本等价关系** $$sinx \sim x,\ \ tanx \sim x,\ \ e^x-1 \sim x,\ \ ln(1+x) \sim x$$ $$1-cosx \sim \frac{1}{2}x^2,\ \ (1+x)^a-1 \sim ax,\ \ a^x-1 \sim xlna$$ **二、应用准则** 1. 代换仅适用于乘除运算中的因子项 2. 加减运算中般不能直接代换 3. 复合函数需保持无穷小量结构致 4. 需保证代换后的精度满足计算需求 **三、典型例题解析** 计算 $\lim_{x \to 0} \frac{tan2x - sin3x}{x^3}$: ```python # 错误示范:直接替换 tan2x~2x,sin3x~3x # 正确解法: 分子 = 2x - (3x - (3x)^3/6) + o(x^3) # 泰勒展开 = 2x - 3x + 4.5x^3 + o(x^3) = -x + 4.5x^3 + o(x^3) 结果 = (-x + 4.5x^3)/x^3 → 不存在 ``` **四、进阶技巧** 对于 $\lim_{x \to 0} \frac{sinx - x}{x^3}$ 这类问题: $$sinx = x - \frac{x^3}{6} + o(x^3)$$ 代入得: $$\frac{(x - \frac{x^3}{6}) - x}{x^3} = -\frac{1}{6}$$ **五、常见误区** - 在 $\lim_{x \to 0} \frac{tanx - sinx}{x^3}$ 中,错误代换会得到 0 - 正确解法应提取公因子: $$\frac{sinx(1 - cosx)}{x^3cosx} \sim \frac{x \cdot \frac{1}{2}x^2}{x^3} = \frac{1}{2}$$
评论 59
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值