【数学竞赛】极限—等价无穷小

本文介绍了在数学竞赛中如何利用等价无穷小简化极限问题的求解,通过三个例题详细展示了等价无穷小在解决复杂极限问题时的有效性。例如,通过提出因子、无穷小替换等方法,简化了极限表达式,使得计算过程更加直观。
摘要由CSDN通过智能技术生成

本文为数学竞赛学习总结。欢迎交流 😃

常用等价无穷小

x → 0 x\to 0 x0

sin ⁡ x ∼ x \sin x\sim x sinxx tan ⁡ x ∼ x \tan x\sim x tanxx 1 − cos ⁡ x ∼ x 2 2 1-\cos x\sim \frac{x^2}{2} 1cosx2x2 arcsin ⁡ x ∼ x \arcsin x\sim x arcsinxx

arctan ⁡ x ∼ x \arctan x\sim x arctanxx e x − 1 ∼ x e^x-1\sim x ex1x ln ⁡ ( 1 + x ) ∼ x \ln(1+x)\sim x ln(1+x)x ( 1 + x ) λ − 1 ∼ λ x (1+x)^\lambda-1\sim \lambda x (1+x)λ1λx

利用等价无穷小可以简化极限式,但要注意代换时需对分子或分母的因子整体代换

【例 1】 lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x ln ⁡ ( 1 + sin ⁡ 2 x ) \lim\limits_{x\to 0}\frac{\tan x-\sin x}{x\ln(1+\sin^2x)} x0limxln(1+sin2x)tanxsinx

【解】该题分子求导后过于复杂,不适合用洛必达法则。可使用等价无穷小,分子提出 tan ⁡ x \tan x tanx
lim ⁡ x → 0 tan ⁡ x ( 1 − cos ⁡ x ) x ln ⁡ ( 1 + sin ⁡ 2 x ) = lim ⁡ x → 0 1 − cos ⁡ x sin ⁡ 2 x = 1 2 \lim\limits_{x\to 0}\frac{\tan x(1-\cos x)}{x\ln(1+\sin^2x)}=\lim\limits_{x\to 0}\frac{1-\cos x}{\sin^2x}=\frac{1}{2} x0limxln(1+sin2x)tanx(1cosx)=x0limsin2x1cosx=21

【例 2】 α ∈ ( 0 , 1 ) \alpha\in(0,1) α(0,1),求极限 lim ⁡ n → ∞ [ ( n + 1 ) α − n α ] \lim\limits_{n\to\infin}[(n+1)^\alpha-n^\alpha] n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值