重积分 | 重积分与大面包(深刻理解)

本文通过面包的面积和体积计算,形象地介绍了定积分和多重积分的概念。从面包片的面积计算引入定积分,用于求解曲边梯形的面积;再到面包块的体积,引入二重积分来计算二维区域的面积;最后考虑到面包密度不均,利用三重积分解决密度问题。通过生活化的例子,使数学知识更易理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

一、面包片与定积分

我很喜欢吃面包。但每次吃的时候,总会想着这个面包会不会太多了,吃多了就吃胖了,对不住自己的身体。但又怕吃少了,吃少了对不住自己的吃货心。于是我想着计算面包究竟有多大。

但我发现,例如想要计算头图的面包片的面积,但这玩意下边界,左边界和右边界是还能看成是直的,但上边界是弯曲的啊,如果把它当成一个长方形,直接底乘高算面积就算得不精确。

虽然当成一个长方形不准确,但如果把它切成细细的面包条,分别再把面包条当成长方形呢?于是我把面包片按宽度平均切,切成很多宽度很小的面包条。由于面包条很小,可以近似看成长方形。每次计算一个小面条的面积,再加起来,就近似得到了整个面包片的面积。

当每个面包条的的宽度无限小时,所有面包条加起来也就越来越近似于面包片的实际面积。于是我们就把这里的宽度叫做 ,也就是微分。

 

也就是说,假如面包正好在[a,b]区间内,假设左右以及下边界都是直的,上边界弯曲形状正好符合

 

 

定积分就是用来求连续函数在某一区间[a,b],与x = a,x = b以及x轴所围成的平面图形的面积。 那么面包片面积的计算公式就为下面这个定积分。

 

 二、面包块与二重积分

 不过一片面包片显然不能满足我。我要吃一块面包。

 诶,那么一块面包的体积怎么算呢?我正想下嘴,又想到了这个问题。面包的顶部换成函数的话,有两个变量,那就是说不能直接把刚才算面包片面积的方法直接拿来用了。

 

不过,我们可以把未知的问题化为已知的问题嘛。

刚才那样,把面包片切成无限窄的面包条,算出每个近似长方形的面包条的面积,再相加起来就得总面积。

那么我们也可以把面包块切成无限薄的面包片,分别算出每个面包片的面积,再加起来就行了嘛。

 不过到底应该怎么算呢?我们来看看同济小绿书上的解释吧!你们发现没有,配图其实是个面包!

 

 


 

 三、密度不均匀的面包块与三重积分

我还没开始吃,又想到一个问题。前些天听说有人买了一斤藕,结果有半斤是洞。我也想看看我的面包究竟有多重。面包里面有很多孔洞,说明面包密度不均匀啊,而我刚才的计算忽略了却密度不均这个事情。

由于有了密度这个东西的干扰,我们还得再多加一重积分。

这可以理解为,把三维的体积压成一条一维的线,即x轴,那么密度函数就是这条线上方的弯曲的函数。这时候又回到了一次积分那里,即求某个区间上密度函数与x轴围成图形的距离。

 

结语

理论准备得相当充分了,是时候看看我的面包究竟有多大了!——不过鉴于刚才我没忍住把它给吃掉了,所以…..多谢大家阅读此文!

 


转自 二重积分到底该怎么理解? - 知乎

感觉配图加解释非常形象啦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值