快速幂算法

方法1:最朴素的想法,7*7=49,49*7=343,... 一步一步算,共进行了9次乘法。

这样算无疑太慢了,尤其对计算机的CPU而言,每次运算只乘上一个个位数,无疑太屈才了。这时我们想到,也许可以拆分问题。

方法2:先算7的5次方,即7*7*7*7*7,再算它的平方,共进行了5次乘法。

但这并不是最优解,因为对于“7的5次方”,我们仍然可以拆分问题。

方法3:先算7*7得49,则7的5次方为49*49*7,再算它的平方,共进行了4次乘法。

模仿这样的过程,我们得到一个在 o(log⁡n) 时间内计算出幂的算法,也就是快速幂

//递归快速幂
int qpow(int a, int n)
{
    if (n == 0)
        return 1;
    else if (n % 2 == 1)
        return qpow(a, n - 1) * a;
    else
    {
        int temp = qpow(a, n / 2);/*如果少了这一步,那么就是又算了n/2+n/2次运算,达不到快速幂效果,快速幂一般就是算logn次;*/
        return temp * temp;
    }
}

在实际问题中,题目常常会要求对一个大素数取模,这是因为计算结果可能会非常巨大,但是在这里考察高精度又没有必要。这时我们的快速幂也应当进行取模,此时应当注意,原则是步步取模,如果MOD较大,还应当开long long

比如11*11%9其实等于(11%9)*(11%9)%9

//递归快速幂
int qpow(int a, int n)
{
    if (n == 0)
        return 1;
    else if (n % 2 == 1)
        return qpow(a, n - 1) * a % Mod;
    else
    {
        int temp = qpow(a, n / 2) % Mod;/*如果少了这一步,那么就是又算了n/2+n/2次运算,达不到快速幂效果,快速幂一般就是算logn次;*/
        return temp * temp % Mod;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值