方法1:最朴素的想法,7*7=49,49*7=343,... 一步一步算,共进行了9次乘法。
这样算无疑太慢了,尤其对计算机的CPU而言,每次运算只乘上一个个位数,无疑太屈才了。这时我们想到,也许可以拆分问题。
方法2:先算7的5次方,即7*7*7*7*7,再算它的平方,共进行了5次乘法。
但这并不是最优解,因为对于“7的5次方”,我们仍然可以拆分问题。
方法3:先算7*7得49,则7的5次方为49*49*7,再算它的平方,共进行了4次乘法。
模仿这样的过程,我们得到一个在 o(logn) 时间内计算出幂的算法,也就是快速幂
//递归快速幂
int qpow(int a, int n)
{
if (n == 0)
return 1;
else if (n % 2 == 1)
return qpow(a, n - 1) * a;
else
{
int temp = qpow(a, n / 2);/*如果少了这一步,那么就是又算了n/2+n/2次运算,达不到快速幂效果,快速幂一般就是算logn次;*/
return temp * temp;
}
}
在实际问题中,题目常常会要求对一个大素数取模,这是因为计算结果可能会非常巨大,但是在这里考察高精度又没有必要。这时我们的快速幂也应当进行取模,此时应当注意,原则是步步取模,如果MOD较大,还应当开long long。
比如11*11%9其实等于(11%9)*(11%9)%9
//递归快速幂
int qpow(int a, int n)
{
if (n == 0)
return 1;
else if (n % 2 == 1)
return qpow(a, n - 1) * a % Mod;
else
{
int temp = qpow(a, n / 2) % Mod;/*如果少了这一步,那么就是又算了n/2+n/2次运算,达不到快速幂效果,快速幂一般就是算logn次;*/
return temp * temp % Mod;
}
}