邻阶矩阵是一种表示图形的矩阵。邻阶矩阵的原理是将图形中的每个顶点都表示成矩阵的一行或一列,然后用矩阵的元素表示两个顶点之间是否存在一条边。因此,在邻阶矩阵中,矩阵的大小为n×n(n为图形中点的数量),如果i、j两个顶点之间存在一条边,则邻阶矩阵中第i行第j列的元素值为1;如果没有,则该元素值为0。
邻阶矩阵的优点是可以快速地检测任意两个顶点之间是否有边相连。它还可以用于计算图形中的路径和环的数量。同时,邻阶矩阵也可以用于其他图形算法中,例如最小生成树算法、拓扑排序算法和Floyd算法等。
一、C 邻阶矩阵 源码实现及详解
邻接矩阵是一种表示图的数据结构,它用二维数组来表示节点之间的连接关系。在这种表示方法中,图中的每个顶点都被表示为矩阵中的一个行和一列,行和列之间的交点表示相应顶点之间的连接关系。
下面以 C 语言为例,给出邻接矩阵的源码实现及详解。
#include <stdio.h>
#define MAXV 100 // 最大顶点数
int graph[MAXV][MAXV]; // 邻接矩阵
int V, E; // 顶点数、边数
void init() {
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
graph[i][j] = 0; // 初始化邻接矩阵
}
}
}
void addEdge(int u, int v) {
graph[u][v] = 1; // 添加边
}
void printGraph() {
printf("Graph:\n");
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
printf("%d ", graph[i][j]); // 输出邻接矩阵
}
printf("\n");
}
}
int main() {
scanf("%d %d", &V, &E); // 输入顶点数和边数
init(); // 初始化邻接矩阵
for (int i = 0; i < E; i++) {
int u, v;
scanf("%d %d", &u, &v); // 输入边的起点和终点
addEdge(u, v); // 添加边到邻接矩阵
}
printGraph(); // 输出邻接矩阵
return 0;
}
在上述代码中,我们使用了一个二维数组 graph 来表示邻接矩阵,其中 graph[i][j] 表示节点 i 和节点 j 之间是否有连接关系。 初始化邻接矩阵时,我们将所有元素初始化为 0。
在输入边时,我们使用一个 addEdge() 函数将节点 u 和节点 v 之间添加一条边,即将 graph[u][v] 的值设为 1。输出邻接矩阵时,我们使用一个 printGraph() 函数来遍历邻接矩阵,并输出矩阵中的每个元素。
二、C++ 邻阶矩阵 源码实现及详解
邻阶矩阵是图的一种表示方法,用一个二维数组来表示,其中数组的每个元素表示两个顶点之间的边是否存在。以下是使用 C++ 实现邻阶矩阵的代码及详细解释。
#include <iostream>
#include <vector>
using namespace std;
class Graph {
private:
int V; // 图中的顶点数
vector<vector<