数据结构与算法之决策残端算法
决策残端算法(Decision stump algorithm)是基于决策树的一种简单分类算法,也是Adaboost分类器的基础。其原理是将训练数据按照某个特征进行二分,并选择能够最好地将训练数据分为不同类别的特征。
具体的步骤如下:
-
对于训练数据集中的每一个特征,按照某种标准(例如信息增益或基尼不纯度)计算其信息增益或不纯度,并选择信息增益或不纯度最大的特征。
-
根据选择的特征将训练数据分为两部分,并计算每一部分的标签概率分布。
-
将训练数据中未被选择的特征忽略,仅根据选择的特征进行分类,即对于测试数据,将其按照选择的特征进行分类,并根据该分类的概率分布进行判断。
这样,每一个决策残端算法对应于一个简单的决策树模型,即根据一个特征将训练数据分为两部分,并根据分割后的数据统计标签概率分布,用于对新数据进行分类。
决策残端算法的优点之一是计算速度快,因为它只是对一个特征进行简单的分割,并不需要建立完整的决策树。另外,决策残端算法也很容易进行并行化处理。
然而,决策残端算法的局限性在于它只考虑了单个特征的影响,无法充分考虑多个特征之间的关系。因此,在实际应用中,通常需要使用更加复杂的分类算法,如支持向量机、深度神经网络等。
一、C 实现决策残端算法及代码详解
决策树算法(Decision Tree)是一种基于树结构来进行决策分析和预测的算法,它通过构建一棵树来表示不同的决策路径和决策结果。每个非叶子节点表示一个属性或特征,每个叶子节点表示一个分类结果。
决策树算法有很多种,其中一种就是决策残差算法(Decision Residual),它是一种基于残差的递归二分决策树算法。在决策残差算法中,每个节点都会计算出其子节点的残差,从而实现对决策路径的优化和修正。
下面是C语言实现决策残差算法的代码:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX_FEATURES 10
#define MAX_SAMPLES 100
#define MAX_NODES 100
typedef struct {
int num_features;
int num_samples;
double data[MAX_SAMPLES][MAX_FEATURES];
int target[MAX_SAMPLES];
} Dataset;
typedef struct {
int feature;
double value;
} Split;
typedef struct {
int left_child;
int right_child;
Split split;
double residual;
int is_leaf;
} Node;
int get_target_class(Dataset *data, int num_samples) {
int i;
int count[2] = { 0, 0 };
for(i = 0; i < num_samples; i++) {
count[data->target[i]]++;
}
if(count[0] > count[1]) {
return 0;
} else {
return 1;
}
}
double get_residual(Dataset *data, int num_samples) {
int i;
double residual;
int target_class = get_target_class(data, num_samples);
for(i = 0; i < num_samples; i++) {
if(data->target[i] != target_class) {
residual += 1.0;
}
}
return residual;
}
double compute_split_residual(Dataset *data, int num_samples, int feature, double value, int *left_count, int *right_count) {
int i;
double left_residual = 0.0;
double right_residual = 0.0;
int left_class = -1;
int right_class = -1;
*left_count = 0;
*right_count = 0;
for(i = 0; i < num_samples; i++) {
if(data->data[i][feature] <= value) {
(*left_count)++;
if(left_class == -1) {
left_class = data->target[i];
}
if(data->target[i] != left_class) {
left_residual += 1.0;
}
} else {
(*right_count)++;
if(right_class == -1) {
right_class = data->target[i];
}
if(data->target[i] != right_class) {
right_residual += 1.0;
}
}
}
double total_residual = left_residual + right_residual;
return total_residual;
}
Split find_best_split(Dataset *data, int num_samples, int num_features, double *split_residual) {
int i, j, k;
double best_residual = INFINITY;
Split best_split;
double residual, value;
int left_count, right_count;
*split_residual = INFINITY;
for(i = 0; i < num_features; i++) {
for(j = 0; j < num_samples; j++) {
value = data->data[j][i];
residual = compute_split_residual(data, num_samples, i, value, &left_count, &right_count);
if(residual < best_residual) {
best_residual = residual;
best_split.feature = i;
best_split.value = value;
*split_residual = residual;
}
}
}
return best_split;
}
void split_data(Dataset *data, int num_samples, int feature, double value, Dataset *left_data, Dataset *right_data) {
int i, j;
int left_count = 0;
int right_count = 0;
for(i = 0; i < num_samples; i++) {
if(data->data[i][feature] <= value) {
for(j = 0; j < data->num_features; j++) {
left_data->data[left_count][j] = data->data[i][j];
}
left_data->target[left_count] = data->target[i];
left_count++;
} else {
for(j = 0; j < data->num_features; j++) {
right_data->data[right_count][j] = data->data[i][j];
}
right_data->target[right_count] = data->target[i];
right_count++;
}
}
left_data->num_samples = left_count;
right_data->num_samples = right_count;
}
int build_tree(Dataset *data, int num_samples, int num_features, Node *nodes, int *node_index) {
int i, j, k;
int left_child, right_child;
double residual;
Split split;
int is_leaf = 0;
int target_class = get_target_class(data, num_samples);
residual = get_residual(data, num_samples);
if(residual == 0.0 || num_samples == 1) {
is_leaf = 1;
}
if(*node_index >= MAX_NODES) {
is_leaf = 1;
}
if(is_leaf) {
nodes[*node_index].left_child = -1;
nodes[*node_index].right_child = -1;
nodes[*node_index].split.feature = -1;
nodes[*node_index].split.value = -1.0;
nodes[*node_index].residual = residual;
nodes[*node_index].is_leaf = 1;
(*node_index)++;
return (*node_index) - 1;
}
split = find_best_split(data, num_samples, num_features, &residual);
if(residual == INFINITY) {
nodes[*node_index].left_child = -1;
nodes[*node_index].right_child = -1;
nodes[*node_index].split.feature = -1;
nodes[*node_index].split.value = -1.0;
nodes[*node_index].residual = residual;
nodes[*node_index].is_leaf = 1;
(*node_index)++;
return (*node_index) - 1;
}
nodes[*node_index].split = split;
nodes[*node_index].residual = residual;
left_child = build_tree(data, num_samples, num_features, nodes, node_index);
right_child = build_tree(data, num_samples, num_features, nodes, node_index);
nodes[*node_index].left_child = left_child;
nodes[*node_index].right_child = right_child;
nodes[*node_index].is_leaf = 0;
(*node_index)++;
return (*node_index) - 1;
}
int predict(Node *root, double *sample) {
int current_node = 0;
while(!root[current_node].is_leaf) {
if(sample[root[current_node].split.feature] <= root[current_node].split.value) {
current_node = root[current_node].left_child;
} else {
current_node = root[current_node].right_child;
}
}
return get_target_class(NULL, 1, root[current_node].residual);
}
int main() {
int i, j;
int num_samples = 10;
int num_features = 2;
int node_index = 0;
Dataset data;
data.num_samples = num_samples;
data.num_features = num_features;
for(i = 0; i < num_samples; i++) {
for(j = 0; j < num_features; j++) {
data.data[i][j] = rand() / (double)RAND_MAX;
}
data.target[i] = rand() % 2;
}
Node nodes[MAX_NODES];
build_tree(&data, num_samples, num_features, nodes, &node_index);
double sample[MAX_FEATURES];
for(i = 0; i < num_features; i++) {
sample[i] = rand() / (double)RAND_MAX;
}
printf("Predicted class: %d\n", predict(nodes, sample));
return 0;
}
以上是决策残差算法的C语言实现,其中使用了结构体来封装数据、节点等信息。代码中包括了决策树的建立、预测等基本操作。需要注意的一点是,在实现中可能需要根据具体情况进行一些调整,以确保算法的正确性和有效性。
二、C++ 实现决策残端算法及代码详解
决策树算法是一种机器学习算法,用于从训练数据中构建决策树模型,该模型可以用于分类和回归问题。决策树模型是一种树形结构,其中每个节点代表一个特征,每个分支代表该特征的一个可能取值,而每个叶节点代表一个类别或数值。
决策残端算法(Decision Stump Algorithm)是一种构建决策树的简单算法,它只能构建一层深度的决策树,每个节点只有两个分支。虽然 Decision Stump 算法的分类性能可能不如更高级的决策树算法,但它具有以下优点:
- 简单易懂,易于解释
- 训练速度快
- 可以处理高维数据
以下是 C++ 实现决策残端算法的代码:
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using std::cout;
using std::endl;
using std::vector;
using std::sort;
class DecisionStump
{
private:
int m_featureIndex; // 最优特征的索引
double m_threshold; // 最优特征的阈值
int m_direction; // 最优特征的方向(大于等于还是小于)
public:
DecisionStump() : m_featureIndex(-1), m_threshold(0.0), m_direction(1) {}
int predict(const vector<double>& x) const
{
return (m_direction * x[m_featureIndex] < m_direction * m_threshold) ? 1 : -1;
}
void train(const vector<vector<double>>& X, const vector<int>& Y)
{
const int ROW = X.size();
const int COL = X[0].size();
// 计算排序后每个特征的分界值
vector<vector<double>> sortedX(COL, vector<double>(ROW));
vector<int> sortedIndices(ROW);
for (int i = 0; i < COL; ++i)
{
// 获取第 i 个特征的值
vector<double> featureValues;
for (int j = 0; j < ROW; ++j)
featureValues.push_back(X[j][i]);
// 对第 i 个特征的值进行排序,同时记录每个值的原始索引
sortIndices(featureValues, sortedIndices);
for (int j = 0; j < ROW; ++j)
sortedX[i][j] = X[sortedIndices[j]][i];
}
// 寻找最优特征和阈值
double minError = std::numeric_limits<double>::max();
for (int i = 0; i < COL; ++i)
{
for (int j = 0; j < ROW - 1; ++j)
{
double threshold = (sortedX[i][j] + sortedX[i][j + 1]) / 2.0;
double error = 0.0;
for (int k = 0; k < ROW; ++k)
{
int prediction = (sortedX[i][k] < threshold) ? 1 : -1;
if (prediction != Y[sortedIndices[k]])
error += 1.0;
}
if (error < minError)
{
m_featureIndex = i;
m_threshold = threshold;
m_direction = 1;
minError = error;
}
error = ROW - error;
if (error < minError)
{
m_featureIndex = i;
m_threshold = threshold;
m_direction = -1;
minError = error;
}
}
}
}
private:
void sortIndices(const vector<double>& values, vector<int>& indices) const
{
for (int i = 0; i < values.size(); ++i)
indices[i] = i;
sort(indices.begin(), indices.end(), [&values](int a, int b) {
return values[a] < values[b];
});
}
};
int main()
{
// 构建训练集
vector<vector<double>> X = { {1.0, 2.0}, {2.0, 1.0}, {3.0, 4.0}, {4.0, 3.0} };
vector<int> Y = { 1, 1, -1, -1 };
// 训练决策树
DecisionStump decisionStump;
decisionStump.train(X, Y);
// 测试模型
for (int i = 0; i < X.size(); ++i)
{
int prediction = decisionStump.predict(X[i]);
cout << "Prediction for (" << X[i][0] << ", " << X[i][1] << "): " << prediction << endl;
}
return 0;
}
该代码通过构建一个 DecisionStump
类来实现决策残端算法,该类包含以下成员变量和方法:
m_featureIndex
:最优特征的索引m_threshold
:最优特征的阈值m_direction
:最优特征的方向(大于等于还是小于)predict
:用于对单个样本进行预测train
:用于训练决策树模型
在 train
方法中,我们首先计算每个特征的分界值,然后在所有可能的特征和分界值组合中寻找最优组合。我们使用排序索引(sorted indices)的方法来计算分界值,即将每个特征的值进行排序,并记录每个值的原始索引,然后根据排序后的值计算分界值。在寻找最优组合时,我们使用错误率(error rate)作为度量标准,即错误率越小,说明模型性能越好,我们将最小错误率所对应的特征、分界值和方向作为最优组合。最后,我们使用训练出来的最优组合来构建决策树模型。
该代码的输出如下:
Prediction for (1, 2): 1
Prediction for (2, 1): 1
Prediction for (3, 4): -1
Prediction for (4, 3): -1
可以看到,决策残端算法对于上述训练集的分类效果是正确的。
三、Java 实现决策残端算法及代码详解
决策树是一种流行的机器学习算法,用于分类和回归。决策残差算法(Decision Residuals)是一种有效的决策树算法,可以生成更准确和解释性更强的模型。在本文中,我们将介绍如何使用Java实现决策残差算法,并提供详细的代码解释。
本文将分为以下部分:
- 算法概述
- 数据预处理
- 决策树生成
- 决策树预测
- 完整代码
算法概述
决策树是一种分类和回归的机器学习算法,它基于一组特征和目标变量创建一个树形模型。决策树的每个节点都表示一个特征,每个边都表示特征之间的关系。叶节点表示分类或回归结果。
决策残余算法是一种改进的决策树算法,它通过将每个样本的残余(目标变量与预测值之间的差异)作为新的目标变量来生成树。这种方法可以更准确地预测目标变量,并且生成的树具有更好的可解释性。
在本文中,我们将使用CART算法(Classification and Regression Trees)来生成决策树。CART算法使用Gini指数来度量特征的纯度,它将数据集分为两个子集,使得各子集内的样本类别尽可能相同。在每个节点上执行该操作,直到树的深度达到某个预定义值或不能继续划分。
数据预处理
在实现决策残余算法之前,我们需要对数据集进行预处理。首先,我们需要将原始数据集拆分为训练集和测试集,通常采用70/30的比例。然后,我们需要对特征进行归一化,这可以将所有特征缩放到0到1之间的范围内。
下面是数据预处理的Java代码:
public static List<Double[]> normalize(List<Double[]> data) {
List<Double[]> normalized = new ArrayList<>();
Double[] maxValues = getMaxValues(data);
for (Double[] row : data) {
Double[] normalizedRow = new Double[row.length];
for (int i = 0; i < row.length - 1; i++) {
normalizedRow[i] = row[i] / maxValues[i];
}
normalizedRow[row.length - 1] = row[row.length - 1];
normalized.add(normalizedRow);
}
return normalized;
}
public static Double[] getMaxValues(List<Double[]> data) {
Double[] maxValues = new Double[data.get(0).length - 1];
Arrays.fill(maxValues, Double.MIN_VALUE);
for (Double[] row : data) {
for (int i = 0; i < row.length - 1; i++) {
if (row[i] > maxValues[i]) {
maxValues[i] = row[i];
}
}
}
return maxValues;
}
public static List<List<Double[]>> splitData(List<Double[]> data, double splitRatio) {
List<List<Double[]>> splitData = new ArrayList<>();
Collections.shuffle(data);
int splitIndex = (int) (data.size() * splitRatio);
splitData.add(data.subList(0, splitIndex));
splitData.add(data.subList(splitIndex, data.size()));
return splitData;
}
决策树生成
接下来,我们将介绍如何实现决策树生成。算法需要递归地在每个节点上执行以下操作:
- 计算Gini指数并选择最佳特征进行分割。
- 递归地在每个子集上执行步骤1。
- 如果深度达到最大值或节点包含的样本数小于最小分割数,则在该节点上停止分割。
下面是决策树生成的Java代码:
public static Node buildTree(List<Double[]> data, int depth, int minSplit) {
if (data.isEmpty()) {
return null;
}
Node node = new Node();
node.data = data;
if (depth == 0 || data.size() < minSplit) {
node.result = getMostCommonResult(data);
return node;
}
Double[] bestSplit = getBestSplit(data);
node.featureIndex = (int) bestSplit[0].doubleValue();
node.featureValue = bestSplit[1];
List<Double[]> leftData = new ArrayList<>();
List<Double[]> rightData = new ArrayList<>();
for (Double[] row : data) {
if (row[node.featureIndex] < node.featureValue) {
leftData.add(row);
} else {
rightData.add(row);
}
}
node.left = buildTree(leftData, depth - 1, minSplit);
node.right = buildTree(rightData, depth - 1, minSplit);
return node;
}
public static Double[] getBestSplit(List<Double[]> data) {
double bestGini = Double.MAX_VALUE;
Double[] bestFeature = new Double[2];
for (int i = 0; i < data.get(0).length - 1; i++) {
for (Double[] row : data) {
double gini = calculateGini(data, i, row[i]);
if (gini < bestGini) {
bestGini = gini;
bestFeature[0] = (double) i;
bestFeature[1] = row[i];
}
}
}
return bestFeature;
}
public static double calculateGini(List<Double[]> data, int featureIndex, double threshold) {
List<Double[]> leftData = new ArrayList<>();
List<Double[]> rightData = new ArrayList<>();
for (Double[] row : data) {
if (row[featureIndex] < threshold) {
leftData.add(row);
} else {
rightData.add(row);
}
}
double leftGini = calculateNodeGini(leftData);
double rightGini = calculateNodeGini(rightData);
double totalGini = calculateNodeGini(data);
double leftWeight = (double) leftData.size() / data.size();
double rightWeight = (double) rightData.size() / data.size();
return totalGini - leftWeight * leftGini - rightWeight * rightGini;
}
public static double calculateNodeGini(List<Double[]> data) {
double sum = 0;
Map<Double, Integer> counts = getCounts(data);
for (double key : counts.keySet()) {
double p = (double) counts.get(key) / data.size();
sum += p * p;
}
return 1 - sum;
}
public static Map<Double, Integer> getCounts(List<Double[]> data) {
Map<Double, Integer> counts = new HashMap<>();
for (Double[] row : data) {
double result = row[row.length - 1];
int count = counts.getOrDefault(result, 0);
counts.put(result, count + 1);
}
return counts;
}
public static double getMostCommonResult(List<Double[]> data) {
Map<Double, Integer> counts = getCounts(data);
double mostCommonResult = 0;
int maxCount = 0;
for (double key : counts.keySet()) {
int count = counts.get(key);
if (count > maxCount) {
maxCount = count;
mostCommonResult = key;
}
}
return mostCommonResult;
}
决策树预测
最后,我们将介绍如何使用生成的决策树进行预测。算法需要递归地在每个节点上执行以下操作:
- 如果有叶节点,则返回其结果。
- 否则,判断样本值是否小于当前节点的阈值。
- 递归地在左/右子树上执行步骤1和2。
下面是决策树预测的Java代码:
public static double predict(Node node, Double[] input) {
if (node.result != null) {
return node.result;
}
if (input[node.featureIndex] < node.featureValue) {
return predict(node.left, input);
} else {
return predict(node.right, input);
}
}
完整代码
以下是完整的Java代码,其中包括数据预处理、决策树生成和决策树预测:
import java.util.*;
public class Decision