数据结构与算法之最小费用最大流算法

最小费用最大流算法是在网络流问题中,用于寻找网络中最小费用最大流的算法。它的主要原理是在残留网络上不断寻找增广路(即增加流量的路径),并通过贪心算法选择费用最小的增广路。在每次寻找增广路后,算法会更新网络流以及残留网络的状态,直到无法找到增广路或者网络流达到最大值。

具体的实现流程如下:

  1. 首先建立一个源点s和汇点t,构建初始网络流图。
  2. 在残留网络中寻找增广路。可以使用广度优先搜索(BFS)或者深度优先搜索(DFS)等算法进行寻找。
  3. 计算每条增广路的费用,并选择费用最小的增广路。
  4. 在选择的增广路上增加流量,更新网络流和残留网络的状态。
  5. 重复步骤2到4,直到无法找到增广路或者网络流达到最大值。

最小费用最大流算法的时间复杂度一般为O(E * F),其中E为图中的边数,F为最大流量。在具体实现时,可以通过使用最大流算法(如Ford-Fulkerson算法、Edmonds-Karp算法等)来解决增广路的问题。

在这里插入图片描述

一、C 实现 最小费用最大流算法 及代码详解

最小费用最大流算法主要是在网络流问题中求解最大流量的同时,使流量的费用最小。其具体实现可以采用网络流中的最短路算法,其中使用的是SPFA算法,其时间复杂度为O(mn),其中m和n分别为网络中的边数和顶点数。

下面是C语言实现最小费用最大流算法的代码及详解:

#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <limits.h>

#define MAX_V 100 // 最大节点数
#define INF INT_MAX // 定义无穷大

// edge类型定义,表示一条边
typedef struct {
    int to; // 边的终点
    int cap; // 边的容量
    int cost; // 边的费用
    int rev; // 反向边在图中的编号
} edge;

edge g[MAX_V][MAX_V]; // 存储图的邻接表
int h[MAX_V]; // 顶点的势值
int d[MAX_V]; // 最短距离
int prevv[MAX_V], preve[MAX_V]; // 最短路中的前驱节点和相应的边

// 添加一条从from到to的容量为cap费用为cost的边
void add_edge(int from, int to, int cap, int cost) {
    g[from][h[from]] = (edge) {to, cap, cost, h[to]}; // 正向边
    g[to][h[to]] = (edge) {from, 0, -cost, h[from]}; // 反向边
    h[from]++; h[to]++;
}

// 求解从s到t的最小费用最大流量
// 返回值为最小费用
int min_cost_flow(int s, int t, int f, int V) {
    int res = 0;
    memset(h, 0, sizeof(h)); // 邻接表初始化
    while (f > 0) { // 不断增广直至无法增广
        // 使用SPFA算法求解最短路
        bool update = true;
        memset(d, INF, sizeof(d));
        d[s] = 0;
        while (update) {
            update = false;
            for (int v = 0; v < V; v++) {
                if (d[v] == INF) continue;
                for (int i = 0; i < h[v]; i++) {
                    edge* e = &g[v][i];
                    if (e->cap > 0 && d[e->to] > d[v] + e->cost) {
                        d[e->to] = d[v] + e->cost;
                        prevv[e->to] = v;
                        preve[e->to] = i;
                        update = true;
                    }
                }
            }
        }
        if (d[t] == INF) return -1; // 无法达到t节点,返回-1表示失败
        int dflow = f;
        for (int v = t; v != s; v = prevv[v]) {
            dflow = f > g[prevv[v]][preve[v]].cap ? g[prevv[v]][preve[v]].cap : f; // 取剩余容量和当前流量较小值
            res += dflow * g[prevv[v]][preve[v]].cost; // 更新费用
            g[prevv[v]][preve[v]].cap -= dflow; // 修改正向边的容量
            g[v][g[prevv[v]][preve[v]].rev].cap += dflow; // 修改反向边的容量
            f -= dflow; // 减少剩余容量
        }
    }
    return res;
}

其中,最小费用最大流算法采用不断增广的方式,直到无法增广为止。每次增广流量时,使用SPFA算法求解最短路,然后根据最短路的结果来更新正向和反向边的容量和费用,并减少剩余容量。

具体来说,算法需要进行以下几个步骤:

  1. 将邻接表初始化,包括邻接表中所有边的容量和费用,以及每个节点的势值
  2. 不断增广直至无法增广,其中每次增广使用SPFA算法求解最短路,并根据最短路的结果来更新正向和反向边的容量和费用,并减少剩余容量
  3. 返回最小费用

最小费用最大流算法的时间复杂度为O(FElogV),其中F为最大流量,E为边数,V为节点数。

使用最小费用最大流算法可以解决一些实际问题,例如:

  • 优化运输问题,通过网络流计算货物在网络中的最优路径和最小成本。
  • 计算两个图形之间的最小距离,例如计算两个多边形之间的最短路径。

总之,最小费用最大流算法是一种非常实用的算法,在计算最大流量的同时,使流量的费用最小,可以应用于各种实际问题中,具有广泛的应用价值。

在这里插入图片描述

二、C++ 实现 最小费用最大流算法 及代码详解

最小费用最大流算法是一种在网络流问题中,通过将费用与容量相乘构成一种新的权值,来求解最小费用的最大流问题的算法。

以下是C++代码实现最小费用最大流算法的详解。

Step 1 定义数据结构

首先我们需要定义数据结构。本题中节点的编号从1开始,n表示节点的数量,m表示边的数量。我们使用结构体来存储边的信息,其中u和v表示边的起点和终点,c表示边的容量,f表示边的流量,w表示边的费用。

const int MAXN = 5005; //最大节点数
const int MAXM = 50005; //最大边数
int n, m, s, t; //节点数、边数、源点、汇点

struct Edge {
    int u, v, c, f, w; //起点、终点、容量、流量、费用
    int next; //下一条边的编号
}edge[MAXM << 1]; //存储所有边的信息

int head[MAXN], cnt = 1; //邻接表形式存储边的信息、边的数量

Step 2 添加边

接下来,我们需要添加边。注意,我们是要建立一个有向图,因此每条边需要分成两条有向边进行处理。我们可以使用一个邻接表来存储图的信息。

void addEdge(int u, int v, int c, int w) {
    edge[++cnt] = {u, v, c, 0, w, head[u]};
    head[u] = cnt;
    edge[++cnt] = {v, u, 0, 0, -w, head[v]};
    head[v] = cnt;
}

Step 3 Bellman-Ford算法

现在我们需要使用Bellman-Ford算法找到源点到汇点的最短路,并且对其进行松弛操作。如果存在负环,则说明无法求出最小费用流,算法结束。

bool BellmanFord() {
    memset(dis, 0x3f, sizeof dis);
    memset(vis, false, sizeof vis);
    queue<int>q;
    q.push(s); dis[s] = 0; vis[s] = true;
    while(!q.empty()) {
        int u = q.front(); q.pop(); vis[u] = false;
        for(int i = head[u]; i; i = edge[i].next) {
            int v = edge[i].v, c = edge[i].c, w = edge[i].w;
            if(c > edge[i].f && dis[u] + w < dis[v]) {
                dis[v] = dis[u] + w;
                pre[v] = i;
                if(!vis[v]) {
                    vis[v] = true; q.push(v);
                }
            }
        }
    }
    return dis[t] != INF;
}

Step 4 DFS寻找增广路

接下来,我们使用DFS来寻找增广路,并且对其进行调整,使其满足最小费用的要求。

int dfs(int u, int flow) {
    if(u == t) return flow;
    int res = flow;
    for(int i = head[u]; i && res; i = edge[i].next) {
        int v = edge[i].v, c = edge[i].c, f = edge[i].f, w = edge[i].w;
        if(c > f && dis[v] == dis[u] + w) {
            int k = dfs(v, min(c - f, res));
            if(!k) dis[v] = INF;
            edge[i].f += k;
            edge[i ^ 1].f -= k;
            res -= k;
            ans += k * w;
        }
    }
    return flow - res;
}

Step 5 求解最小费用流

综合上述步骤,我们可以得到完整的代码。主程序中,我们先进行一次Bellman-Ford算法,判断是否存在负环。如果不存在,则使用dfs函数寻找增广路,并更新答案。

int main() {
    scanf("%d%d%d%d", &n, &m, &s, &t);
    for(int i = 1; i <= m; ++i) {
        int u, v, c, w;
        scanf("%d%d%d%d", &u, &v, &c, &w);
        addEdge(u, v, c, w);
    }
    while(BellmanFord()) {
        int k = dfs(s, INF);
        while(k) {
            k = dfs(s, INF);
        }
    }
    printf("%d", ans);
    return 0;
}

三、Java 实现 最小费用最大流算法 及代码详解

最小费用最大流算法是网络流中的一种重要算法,它可以在给定源点和汇点的情况下,找到一种在流量最大的情况下费用最小的流量分配方案。这个算法在很多实际问题中都有广泛应用,比如邮路规划、物流配送等。下面是 Java 实现最小费用最大流算法的代码详解。

  1. 数据结构的定义

首先,我们需要定义几个数据结构来表示网络流的基本元素,包括边、节点和网络。

边定义如下:

class Edge {
    int from, to, flow, cost;

    public Edge(int from, int to, int flow, int cost) {
        this.from = from;
        this.to = to;
        this.flow = flow;
        this.cost = cost;
    }
}

节点定义如下:

class Node {
    int id, dist;
    boolean inque;

    public Node(int id, int dist, boolean inque) {
        this.id = id;
        this.dist = dist;
        this.inque = inque;
    }
}

网络定义如下:

class Network {
    List<List<Edge>> graph;
    int[] pre;
    int[] dis;
    boolean[] inque;

    public Network(int size) {
        graph = new ArrayList<>(size);
        for (int i = 0; i < size; i++) {
            graph.add(new ArrayList<>());
        }
        pre = new int[size];
        dis = new int[size];
        inque = new boolean[size];
    }

    public void addEdge(int from, int to, int flow, int cost) {
        graph.get(from).add(new Edge(from, to, flow, cost));
        graph.get(to).add(new Edge(to, from, 0, -cost));
    }
}
  1. SPFA 算法实现

在实现最小费用最大流算法之前,我们需要实现 SPFA(Shortest Path Faster Algorithm)算法,用来找到当前的最短路。这里我们使用队列来实现。

SPFA 算法的具体实现如下:

private boolean spfa(Network network, int source, int sink) {
    int n = network.graph.size();
    Arrays.fill(network.dis, Integer.MAX_VALUE);
    Arrays.fill(network.inque, false);

    Queue<Integer> queue = new LinkedList<>();
    queue.offer(source);
    network.dis[source] = 0;
    network.inque[source] = true;

    while (!queue.isEmpty()) {
        int u = queue.poll();
        network.inque[u] = false;
        for (Edge e : network.graph.get(u)) {
            int v = e.to;
            if (e.flow > 0 && network.dis[v] > network.dis[u] + e.cost) {
                network.dis[v] = network.dis[u] + e.cost;
                network.pre[v] = u;
                if (!network.inque[v]) {
                    queue.offer(v);
                    network.inque[v] = true;
                }
            }
        }
    }
    return network.dis[sink] != Integer.MAX_VALUE;
}
  1. 最小费用最大流算法实现

有了 SPFA 算法的基础,我们就可以实现最小费用最大流算法了,其基本思路如下:

  • 首先,使用 SPFA 算法求出当前的最短路,这个最短路相对于费用而言,即为最小费用。
  • 然后,在这条最短路上增加流量,得到一个新的流量分配方案。
  • 再重复这两个步骤,直到无法再增加流量为止。

最小费用最大流算法的具体实现如下:

public int minCostMaxFlow(Network network, int source, int sink) {
    int n = network.graph.size();
    int maxFlow = 0, minCost = 0;
    while (spfa(network, source, sink)) {
        int flow = Integer.MAX_VALUE;
        for (int u = sink; u != source; u = network.pre[u]) {
            flow = Math.min(flow, network.graph.get(network.pre[u]).stream()
                    .filter(e -> e.to == u)
                    .findFirst().get().flow);
        }
        for (int u = sink; u != source; u = network.pre[u]) {
            network.graph.get(network.pre[u]).stream()
                    .filter(e -> e.to == u)
                    .findFirst().get().flow -= flow;
            network.graph.get(u).stream()
                    .filter(e -> e.to == network.pre[u])
                    .findFirst().get().flow += flow;
            minCost += flow * network.dis[sink];
        }
        maxFlow += flow;
    }
    return minCost;
}

最小费用最大流算法的时间复杂度为 O(F * E * log V),其中 F 表示最大流量,E 表示边数,V 表示节点数。最小费用最大流算法是网络流中的一种重要算法,它可以在给定源点和汇点的情况下,找到一种在流量最大的情况下费用最小的流量分配方案。这个算法在很多实际问题中都有广泛应用,比如邮路规划、物流配送等。下面是 Java 实现最小费用最大流算法的代码详解。

  1. 数据结构的定义

首先,我们需要定义几个数据结构来表示网络流的基本元素,包括边、节点和网络。

边定义如下:

class Edge {
    int from, to, flow, cost;

    public Edge(int from, int to, int flow, int cost) {
        this.from = from;
        this.to = to;
        this.flow = flow;
        this.cost = cost;
    }
}

节点定义如下:

class Node {
    int id, dist;
    boolean inque;

    public Node(int id, int dist, boolean inque) {
        this.id = id;
        this.dist = dist;
        this.inque = inque;
    }
}

网络定义如下:

class Network {
    List<List<Edge>> graph;
    int[] pre;
    int[] dis;
    boolean[] inque;

    public Network(int size) {
        graph = new ArrayList<>(size);
        for (int i = 0; i < size; i++) {
            graph.add(new ArrayList<>());
        }
        pre = new int[size];
        dis = new int[size];
        inque = new boolean[size];
    }

    public void addEdge(int from, int to, int flow, int cost) {
        graph.get(from).add(new Edge(from, to, flow, cost));
        graph.get(to).add(new Edge(to, from, 0, -cost));
    }
}
  1. SPFA 算法实现

在实现最小费用最大流算法之前,我们需要实现 SPFA(Shortest Path Faster Algorithm)算法,用来找到当前的最短路。这里我们使用队列来实现。

SPFA 算法的具体实现如下:

private boolean spfa(Network network, int source, int sink) {
    int n = network.graph.size();
    Arrays.fill(network.dis, Integer.MAX_VALUE);
    Arrays.fill(network.inque, false);

    Queue<Integer> queue = new LinkedList<>();
    queue.offer(source);
    network.dis[source] = 0;
    network.inque[source] = true;

    while (!queue.isEmpty()) {
        int u = queue.poll();
        network.inque[u] = false;
        for (Edge e : network.graph.get(u)) {
            int v = e.to;
            if (e.flow > 0 && network.dis[v] > network.dis[u] + e.cost) {
                network.dis[v] = network.dis[u] + e.cost;
                network.pre[v] = u;
                if (!network.inque[v]) {
                    queue.offer(v);
                    network.inque[v] = true;
                }
            }
        }
    }
    return network.dis[sink] != Integer.MAX_VALUE;
}
  1. 最小费用最大流算法实现

有了 SPFA 算法的基础,我们就可以实现最小费用最大流算法了,其基本思路如下:

  • 首先,使用 SPFA 算法求出当前的最短路,这个最短路相对于费用而言,即为最小费用。
  • 然后,在这条最短路上增加流量,得到一个新的流量分配方案。
  • 再重复这两个步骤,直到无法再增加流量为止。

最小费用最大流算法的具体实现如下:

public int minCostMaxFlow(Network network, int source, int sink) {
    int n = network.graph.size();
    int maxFlow = 0, minCost = 0;
    while (spfa(network, source, sink)) {
        int flow = Integer.MAX_VALUE;
        for (int u = sink; u != source; u = network.pre[u]) {
            flow = Math.min(flow, network.graph.get(network.pre[u]).stream()
                    .filter(e -> e.to == u)
                    .findFirst().get().flow);
        }
        for (int u = sink; u != source; u = network.pre[u]) {
            network.graph.get(network.pre[u]).stream()
                    .filter(e -> e.to == u)
                    .findFirst().get().flow -= flow;
            network.graph.get(u).stream()
                    .filter(e -> e.to == network.pre[u])
                    .findFirst().get().flow += flow;
            minCost += flow * network.dis[sink];
        }
        maxFlow += flow;
    }
    return minCost;
}

最小费用最大流算法的时间复杂度为 O(F * E * log V),其中 F 表示最大流量,E 表示边数,V 表示节点数。

在这里插入图片描述

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
逻辑结构:描述数据元素之间的逻辑关系,如线性结构(如数组、链表)、树形结构(如二叉树、堆、B树)、图结构(有向图、无向图等)以及集合和队列等抽象数据类型。 存储结构(物理结构):描述数据在计算机中如何具体存储。例如,数组的连续存储,链表的动态分配节点,树和图的邻接矩阵或邻接表表示等。 基本操作:针对每种数据结构,定义了一系列基本的操作,包括但不限于插入、删除、查找、更新、遍历等,并分析这些操作的时间复杂度和空间复杂度。 算法算法设计:研究如何将解决问题的步骤形式化为一系列指令,使得计算机可以执行以求解问题算法特性:包括输入、输出、有穷性、确定性和可行性。即一个有效的算法必须能在有限步骤内结束,并且对于给定的输入产生唯一的确定输出。 算法分类:排序算法(如冒泡排序、快速排序、归并排序),查找算法(如顺序查找、二分查找、哈希查找),图论算法(如Dijkstra最短路径算法、Floyd-Warshall算法、Prim最小生成树算法),动态规划,贪心算法,回溯法,分支限界法等。 算法分析:通过数学方法分析算法的时间复杂度(运行时间随数据规模增长的速度)和空间复杂度(所需内存大小)来评估其效率。 学习算法与数据结构不仅有助于理解程序的内部工作原理,更能帮助开发人员编写出高效、稳定和易于维护的软件系统。
最小公倍数(Least Common Multiple,简称LCM)是指两个或多个数中能够被所有这些数整除的最小正整数。在数据结构和算法中,求两个数的最小公倍数可以使用最大公约数(Greatest Common Divisor,简称GCD)的概念来解决。 根据引用的介绍,最小公倍数可以通过以下公式计算:最小公倍数 = 两数的乘积 / 最大公约数。因此,我们首先需要计算出两个数的最大公约数。 引用给出了两种实现最大公约数的方法。第一种是非递归实现,其中使用了取余运算和循环来计算最大公约数。第二种是递归实现,其中使用了递归调用来计算最大公约数。 在非递归实现中,我们可以使用BigInt类来处理大整数。通过对输入的两个数进行比较,然后使用取余运算和循环来计算最大公约数。最后返回计算结果。 在递归实现中,我们通过判断其中一个数是否为0来终止递归。如果是0,则返回另一个数作为最大公约数;否则,继续递归调用,将第二个数和第一个数取余的结果作为参数传入。 接下来,我们可以根据最大公约数计算最小公倍数。根据引用的介绍,最小公倍数可以通过两个数的乘积除以最大公约数来计算。 因此,我们可以编写一个方法,接收两个数作为参数,先计算出最大公约数,然后将两个数的乘积除以最大公约数即可得到最小公倍数。 总结起来,计算两个数的最小公倍数的步骤如下: 1. 使用非递归或递归的方法计算出两个数的最大公约数。 2. 将两个数的乘积除以最大公约数,得到最小公倍数。 3. 返回最小公倍数作为结果。 希望这些信息对您有所帮助。如果您还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值