【图论】网络流——最大流和最小费用流

【图论】网络流——最大流和最小费用流

1. 最大流问题

主要解决系统中的流量问题:如公路系统中的车辆流、物资调配系统中的物资流、金融系统中的现金流等。

这些问题都可以归结为网络流问题,如何安排使流量最大即最大流问题


什么是最大流?

如左图能输送两份的水,是最大流;右图只能输送一份的水,不是最大流

在这里插入图片描述

1.1 基本概念

网络:图 D = ( V , A , C ) D=(V,A,C) D=(V,A,C)

  • V V V :点集。其中 v s v_s vs 为发点,只有发出的弧; v t v_t vt 为收点,该点只有进入的弧;其余的点为中间点;
  • A A A: 弧集。对于每一条弧 ( v i , v j ) ∈ A (v_i,v_j)\in A (vi,vj)A
  • C C C:容量集。每一条弧的容量 c ( v i , v j ) > = 0 c(v_i,v_j)>=0 c(vi,vj)>=0(或简记为 c i j c_{ij} cij),其中 C = { c i j } C=\{c_{ij}\} C={cij}
  • f = { f i j } = { f ( v i , v j ) } f=\{f_{ij}\}=\{f(v_i,v_j)\} f={fij}={f(vi,vj)}:弧 ( v i , v j ) (v_i,v_j) (vi,vj)上的流量

可行流:

(1) 容量限制条件: 0 ≤ f i j ≤ c i j 0\leq f_{ij} \leq c_{ij} 0fijcij

(2) 平衡条件:

  • 中间点:流出量 = 流入量   ∑ j : ( v i , v j ) ∈ A f i j − ∑ k : ( v k , v i ) ∈ A f k i = 0 ; \sum_{j:\left(v_{i}, v_{j}\right) \in A} f_{i j}-\sum_{k:\left(v_{k}, v_{i}\right) \in A} f_{k i}=0 ; j:(vi,vj)Afijk:(vk,vi)Afki=0;
  • 发点: ∑ j : ( v s , v j ) ∈ A f s j = v \sum_{j:\left(v_{s}, v_{j}\right) \in A} f_{s j}=v j:(vs,vj)Afsj=v
  • 收点: ∑ k : ( v k , v t ) ∈ A f k t = v \sum_{k_{:}\left(v_{k}, v_{t}\right) \in A} f_{k t}=v k:(vk,vt)Afkt=v

式中:v称为这个可行流的流量,即发点的净输出量。


最大流问题可以写为如下的线性规划模型:

max ⁡ v ,  s. t.  { ∑ j : ( v s , v j ) ∈ A f s j = v , ∑ j : ( v i , v j ) ∈ A f i j − ∑ k : ( v k , v i ) ∈ A f k i = 0 , i ≠ s , t , ∑ k : ( v k , v t ) ∈ A f k t = v , 0 ⩽ f i j ⩽ c i j , ∀ ( v i , v j ) ∈ A . \begin{array}{l} \max v, \\ \text { s. t. }\left\{\begin{array}{ll} \sum_{j:\left(v_{s}, v_{j}\right) \in A} f_{s j}=v, \\ \sum_{j:\left.(v_i, v_{j}\right)\in A} f_{i j}-\sum_{k:\left(v_{k}, v_{i}\right) \in A} f_{k i}=0, & i \neq s, t, \\ \sum_{k:\left(v_{k}, v_{t}\right) \in A} f_{k t}=v, & \\ 0 \leqslant f_{i j} \leqslant c_{i j}, & \forall\left(v_{i}, v_{j}\right) \in A . \end{array}\right. \end{array} maxv, s. t.  j:(vs,vj)Afsj=v,j:(vi,vj)Afijk:(vk,vi)Afki=0,k:(vk,vt)Afkt=v,0fijcij,i=s,t,(vi,vj)A.



1.2 寻求最大流的算法(Ford-Fulerson)

步骤:

  1. 建立残差图, 将残差图的容量初始化

  2. 当增广路径可以被找到时一直循环以下步骤:

    a. 在残差图上一直寻找增广路径
    b. 在增广路径上找到容量最小值 x x x
    c. 更新残差图上的容量: 增广路径上的容量 = 增广路径上的容量 − x 增广路径上的容量 =增广路径上的容量 - x 增广路径上的容量=增广路径上的容量x
    d. 添加反向路径。(沿着增广路径的反方向,所有边的权重为x。)

示例:

  1. 初始化: 左图为原图,右图为构建的与原图一致的残差图。

在这里插入图片描述


  1. 第一轮循环:

① 找到如图红线的增广路径

② 可以看到整条路上容量的最大值为3,因此将路径上所有边的容量减去3

③ 去除容量为0的边,并添加值为3的反向路径
在这里插入图片描述


  1. 第二轮循环

① 找到如图红线的增广路径

② 可以看到整条路上容量的最大值为1,因此将路径上所有边的容量减去1

③ 去除容量为0的边,并添加值为1的反向路径

在这里插入图片描述

④ 合并反向路径的容量值

在这里插入图片描述

  1. 第三轮循环

① 找到如图的增广路径 (注意:这里就体现了增加的反向边的重要性了,如果没有反向边,是找不到从起点到终点的增广路径的

② 可以看到整条路上容量的最大值为1,因此将路径上所有边的容量减去1

③ 去除容量为0的边,并添加值为1的反向路径

在这里插入图片描述

④ 合并反向路径的容量值

在这里插入图片描述

  1. 第四轮循环

发现没有水流流入 v 3 v_3 v3,因此没有水流从起点到终点,循环终止。

在这里插入图片描述

  1. 计算容量

最大流 = 3 + 1 + 1 = 5 最大流=3+1+1=5 最大流=3+1+1=5

代码

import copy
from collections import deque


def hasPath(Gf, s, t, path):
    # BFS algorithm
    V = len(Gf)
    visited = list(range(V))
    for i in range(V):
        visited[i] = False
    visited[s] = True
    queue = deque([s])	# 起点入队
    while queue:
        temp = queue.popleft()	# 队头元素
        if temp == t:	# 如果到达了终点
            return True
        for i in range(V):	# 遍历队头元素的每个邻点
        	# 如果零点没有被访问且流量为正向
            if not visited[i] and (Gf[temp][i] > 0):
                queue.append(i)
                visited[i] = True
                path[i] = temp   # 节点i的父节点为temp
    return visited[t]


def max_flow(graph, s, t):
    maxFlow = 0
    Gf = copy.deepcopy(graph)
    V = len(Gf)
    path = list(range(V))
    # 只要有增广路径就一直循环
    while hasPath(Gf, s, t, path):
        min_flow = float('inf')

        # 不断利用道路上的父节点回溯,找到增广路径上的容量最小值
        v = t
        while v != s:	
            u = path[v]
            min_flow = min(min_flow, Gf[u][v])
            v = path[v]
        print(min_flow)

        # 增广路径上的容量减去最小值,并添加反向路径
        v = t
        while v != s:
            u = path[v]
            Gf[u][v] -= min_flow
            Gf[v][u] += min_flow
            v = path[v]

        maxFlow += min_flow
    return maxFlow

M=0
capacity = [
[0,16,13,M,M,M],
[M,0,10,12,M,M],
[M,4,0,M,14,M],
[M,M,9,0,M,20],
[M,M,M,7,0,4],
[M,M,M,M,M,0]
]

flow = max_flow(capacity, 0, 5)
print("flow =", flow)

1.3 matlab求最大流

如图求①到⑧的最大流
在这里插入图片描述

a=zeros(8);a(1,[2:4])=[6,4,5];
a(2,[3,5,6])=[3,9,9];
a(3,[4:7])=[5,6,7,3];
a(4,[3,7])=[2,5];
a(5,8)=12;
a(6,[5,8])=[8,10];
a(7,[6,8])=[4,15];
G=digraph(a);
H=plot(G,'EdgeLabel',G.Edges.Weight);
[M,F]=maxflow(G,1,8);
F.Edges,highlight(H,F);

在这里插入图片描述


2. 最小流问题

2.1 基本概念

在许多实际问题中,往往还要考虑网络流上的费用问题。例如在运输问题中,人们总是希望在完成运输任务时,寻求一个运输费用最小的方案。

最小流问题可以写为如下的线性规划模型:

b i j b_{ij} bij为弧 ( v i , v j ) (v_i,v_j) (vi,vj)上的单位费用

min ⁡ ∑ j : ( v i , v j ) ∈ A f i j b i j  s. t.  { ∑ j : ( v s , v j ) ∈ A f s j = v , ∑ j : ( v i , v j ) ∈ A f i j − ∑ k : ( v k , v i ) ∈ A f k i = 0 , i ≠ s , t , ∑ k : ( v k , v t ) ∈ A f k t = v , 0 ⩽ f i j ⩽ c i j , ∀ ( v i , v j ) ∈ A . \begin{array}{l} \min \sum_{j:\left(v_{i}, v_{j}\right) \in A} f_{i j}b_{ij} \\ \text { s. t. }\left\{\begin{array}{ll} \sum_{j:\left(v_{s}, v_{j}\right) \in A} f_{s j}=v, \\ \sum_{j:\left.(v_i, v_{j}\right)\in A} f_{i j}-\sum_{k:\left(v_{k}, v_{i}\right) \in A} f_{k i}=0, & i \neq s, t, \\ \sum_{k:\left(v_{k}, v_{t}\right) \in A} f_{k t}=v, & \\ 0 \leqslant f_{i j} \leqslant c_{i j}, & \forall\left(v_{i}, v_{j}\right) \in A . \end{array}\right. \end{array} minj:(vi,vj)Afijbij s. t.  j:(vs,vj)Afsj=v,j:(vi,vj)Afijk:(vk,vi)Afki=0,k:(vk,vt)Afkt=v,0fijcij,i=s,t,(vi,vj)A.

v = 最大流 v m a x v=最大流v_{max} v=最大流vmax时,本问题就是最小费用最大流问题;如果 v > v m a x v>v_{max} v>vmax,则本问题无解

2.2 求最小流的迭代算法

(1)求出从出发点到收点的最小费用流 μ ( v x , v t ) \mu (v_x,v_t) μ(vx,vt)。(类似求最短路)

(2)对该通路 μ ( v x , v t ) \mu (v_x,v_t) μ(vx,vt)分配可能的最大流量 f ˉ = min ⁡ ( v i , v j ) ∈ μ ( v s , v t ) { c i j } \bar f=\min_{(v_i,v_j)\in \mu(v_s,v_t)}\{c_{ij}\} fˉ=min(vi,vj)μ(vs,vt){cij},并让通路上所有边的容量对应减少 f ˉ \bar f fˉ。并将通路上的饱和边的单位费用改为 ∞ \infty .

(3)作该通路 μ ( v s , v t ) \mu (v_s,v_t) μ(vs,vt)所有边 ( v i , v j ) (v_i,v_j) (vi,vj)的反向边 ( v j , v i ) (v_j,v_i) (vj,vi)。令 c j i = f ˉ , b j i = − b i j c_{ji}=\bar f,b_{ji}=-b_{ij} cji=fˉbji=bij

(4)重复(1)~(3),直到发点到收点的全部流量等于 v v v为止,或找不到增广路到 v v v


2.3 matlab 求最大费用最小流

如图带有运费的网络,求从 v s v_s vs v t v_t vt的最小费用最大流,其中弧上权重的第1个数字是网络的容量,第2个数字是网络的单位运费。

在这里插入图片描述

NN = cellstr(strcat('v',int2str([2:5]')));  % 构造中间节点
NN = {'vs',NN{:},'vt'}; % 添加发点和收点
L ={'vs','v2',5,3;'vs','v3',3,6;'v2','v4',2,8;'v3','v2',1,2;
    'v3','v5',4,2;'v4','v3',1,1;'v4','v5',3,4;'v4','vt',2,10;
    'v5','vt',5,2};
G=digraph;G=addnode(G,NN);
G1=addedge(G,L(:,1),L(:,2),cell2mat(L(:,3)));
[M,F]=maxflow(G1,'vs','vt');    % 求最大流


G2=addedge(G,L(:,1),L(:,2),cell2mat(L(:,4)));
c = full(adjacency(G1,'weighted'));
b = full(adjacency(G2,'weighted'));
f = optimvar('f',6,6,'LowerBound',0);
prob=optimproblem;
prob.Objective = sum(sum(b.*f));
con1 = [sum(f(1,:))==M
    sum(f(:,[2:end-1]))'==sum(f([2:end-1],:),2)
    sum(f(:,end))==M];
prob.Constraints.con1=con1;
prob.Constraints.con2=f<=c;
[sol,fval,flag,out ] = solve(prob);
ff=sol.f;   % 显示最小费用最大流对应的矩阵

图中对应的就是最小费用最大流:

在这里插入图片描述

学习对象:【13-2: Ford-Fulkerson Algorithm 寻找网络最大流】

  • 9
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我胡萝北

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值