第一类切比雪夫多项式拟合法的使用

0、部分笔记来自

        基于卫星星历的BDS卫星轨道差值与拟合方法研究及精度分析_李振昌(硕士论文)

一、切比雪夫多项式定义

 二、生成切比雪夫多项式

三、使用切比雪夫多项式进行数据拟合的步骤

1. 数据标准化:将数据标准化到区间 [-1, 1],因为切比雪夫多项式在这个区间上定义。
2. 生成切比雪夫多项式矩阵:使用递推关系生成切比雪夫多项式矩阵 T,其中每列对应一个阶数的切比雪夫多项式。
3. 构建最小二乘问题:通过最小二乘法求解多项式系数向量。
4. 预测:使用得到的系数向量和切比雪夫多项式进行预测。

四、代码示例

clear all
close all
clc

% 加载数据
load('str_traj.mat')
times = str_traj.vt_sec(1:22);    % 时间序列
X = str_traj.Load_xyzVxyzKm(1:22,1);    % X坐标值
Y = str_traj.Load_xyzVxyzKm(1:22,2);    % Y坐标值
Z = str_traj.Load_xyzVxyzKm(1:22,3);    % Z坐标值

% 将时间标准化到[-1, 1]
t_min = min(times);
t_max = max(times);
times_normalized = 2 * (times - t_min) / (t_max - t_min) - 1;

% 设置切比雪夫多项式的阶数
deg = 22;

% 生成切比雪夫多项式矩阵
T = zeros(length(times), deg + 1);
T(:, 1) = 1;                % T0(t) = 1
if deg >= 1
    T(:, 2) = times_normalized; % T1(t) = tau
end
for n = 3:deg+1
    T(:, n) = 2 * times_normalized .* T(:, n-1) - T(:, n-2);
end

% 构建最小二乘问题
C_x = (T' * T) \ (T' * X);
C_y = (T' * T) \ (T' * Y);
C_z = (T' * T) \ (T' * Z);

% 预测特定时间点的数据
kk = 0;
for t = 10:10:20*60
    kk = kk + 1;
    tau(kk) = 2 * (t - t_min) / (t_max - t_min) - 1;
    tt(kk) = t;

    % 计算预测点的切比雪夫多项式值
    T_pred = zeros(1, deg + 1);
    T_pred(1) = 1;          % T0(t) = 1
    if deg >= 1
        T_pred(2) = tau(kk);    % T1(t) = tau
    end
    for n = 3:deg+1
        T_pred(n) = 2 * tau(kk) * T_pred(n-1) - T_pred(n-2);
    end

    % 计算预测点的坐标
    Xpred(kk) = T_pred * C_x;
    Ypred(kk) = T_pred * C_y;
    Zpred(kk) = T_pred * C_z;
end

% 绘制拟合曲线和原始数据
figure;
subplot(3,1,1);
plot(times, X, 'b.', 'DisplayName', 'Original Data');
hold on
plot(tt, Xpred, 'r.', 'DisplayName', 'Fitted Curve');
title('X Coordinate');
legend;

subplot(3,1,2);
plot(times, Y, 'b.', 'DisplayName', 'Original Data');
hold on
plot(tt, Ypred, 'r.', 'DisplayName', 'Fitted Curve');
title('Y Coordinate');
legend;

subplot(3,1,3);
plot(times, Z, 'b.', 'DisplayName', 'Original Data');
hold on
plot(tt, Zpred, 'r.', 'DisplayName', 'Fitted Curve');
title('Z Coordinate');
legend;

 五、总结

切比雪夫多项式是一种强大的工具,适用于数据拟合和逼近问题。通过将时间标准化、生成切比雪夫多项式矩阵、构建最小二乘问题并进行预测,你可以有效地拟合数据并进行预测。上述代码示例提供了一个完整的流程,你可以根据需要进行修改和扩展。

比雪夫多项式和雅可比多项式都是常见的正交多项式。其中,比雪夫多项式是定义在区间[-1,1]上的正交多项式,而雅可比多项式则是定义在区间[-1,1]上的一类正交多项式。两者都在数学和工程学科中有广泛的应用。 关于比雪夫多项式,可以进一步了解以下内容: - 比雪夫多项式是一类特殊的多项式,其定义为Tn(x) = cos(n * arccos(x)),其中n为多项式的次数,x为自变量。第一类比雪夫多项式在数学和物理学中有广泛的应用,例如在逼近论、微分方程、傅里叶级数等领域。 - 比雪夫多项式的性质包括正交性、归一性、三项递推关系等。其中,正交性是指在区间[-1,1]上,不同次数的比雪夫多项式之间的内积为0,相同次数的比雪夫多项式之间的内积为一个常数。 - 比雪夫多项式的应用包括多项式插值、函数逼近、数值积分等。其中,多项式插值是指利用比雪夫多项式在给定区间上的节点进行插值,得到一个多项式函数,用于逼近原函数。 关于雅可比多项式,可以进一步了解以下内容: - 雅可比多项式是定义在区间[-1,1]上的一类正交多项式,其定义为P^(α,β)_n(x),其中α和β为两个参数,n为多项式的次数,x为自变量。不同的参数α和β会导致不同的雅可比多项式。 - 雅可比多项式的性质包括正交性、归一性、三项递推关系等。其中,正交性是指在区间[-1,1]上,不同次数的雅可比多项式之间的内积为0,相同次数的雅可比多项式之间的内积为一个常数。 - 雅可比多项式的应用包括多项式插值、函数逼近、数值积分等。其中,多项式插值是指利用雅可比多项式在给定区间上的节点进行插值,得到一个多项式函数,用于逼近原函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值