切比雪夫(最小区域法)圆拟合算法

本文介绍了使用切比雪夫方法进行圆拟合的算法,包括理论背景、将圆拟合问题转化为线性规划形式,以及通过高斯牛顿迭代求解优化问题的过程。精度要求严格,代码实现和测试结果展示了其在实际应用中的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

本期话题:切比雪夫(最小区域法)圆拟合算法

相关背景和理论
点击前往
主要介绍了应用背景和如何转化成线性规划问题

在这里插入图片描述

圆拟合输入和输出要求

输入

  1. 10到631个点,全部采样自2D圆附近。
  2. 每个点3个坐标,坐标精确到小数点后面20位,最后1个坐标为0。
  3. 坐标单位是mm, 范围[-500mm, 500mm]。

输出

  1. 圆心1点C,用三个坐标表示。
  2. 半径r。
  3. 圆度F,所有点到圆距离最大的2倍。

F的最小区域法理解
在这里插入图片描述

黑色为点云。

对于圆来讲,最小区域是指用两个同心圆夹住点云,使得圆之间的半径之差最小。这个最小值就是F。拟合结果就是两圆中间的圆(橙色圆)。

精度要求

  1. C点到标准圆心距离不能超过0.0001mm。
  2. r与标准半径的差不能超过0.0001mm。
  3. F与标准圆度误差不能超过0.00001mm。

圆优化标函数

根据认证要求,圆拟合转化成数学表示如下:

圆参数化表示

  1. 圆心C = (x0, y0,0)。
  2. 半径r。

圆方程 ( x − x 0 ) 2 + ( y − y 0 ) 2 = r 2 圆方程 (x-x_0)^2+(y-y_0)^2=r^2 圆方程(xx0)2+(yy0)2=r2

点到圆距离

第i个点 pi(xi, yi, 0)。

根据定义得到距离

d i = ∥ ( p i − X 0 ) ∥ − r d_i =\left \| (p_i-X_0) \right \|-r di=(piX0)r

展开一下:

d i = r i − r d_i = r_i -r di=rir

r i = ( x i − x 0 ) 2 + ( y i − y 0 ) 2 r_i = \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2} ri=(xix0)2+(yiy0)2

优化能量方程

能量方程 H = f ( X 0 , r ) = max ⁡ 1 n ∣ d i ∣ H=f(X0, r)=\displaystyle \max_1^n {|d_i|} H=f(X0,r)=1maxndi

上式是一个4元二次函数中,X0, r是未知量,拟合2D圆的过程也可以理解为优化X0, r使得方程E最小。

可以对上述方程求导,使得导数等于0取得最值。但是求导后会变成一个比较复杂的方程组,不好解。可以使用高斯牛顿迭代法来求解。

转化为线性规划

设 a = ( x 0 , y 0 , r ) , d i = F ( x i ;   a ) , 引入 Γ = M A X i = 1 n    ∣ d i ∣ 设a=(x_0, y_0, r), d_i=F(x_i;\ a), 引入\Gamma=\overset n{\underset {i=1}{MAX}}\;|d_i| a=(x0,y0,r),di=F(xi; a),引入Γi=1MAXndi

根据上述定义,可以将原来的最值问题转化为下述条件

对于所有点应该满足

F ( x i ;   a ) ≤ Γ , ( F ( x i ;   a ) > 0 ) F(x_i;\ a)\le \Gamma, (F(x_i;\ a)>0) F(xi; a)Γ,

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值