切比雪夫(最小区域法)圆拟合算法

38 篇文章 0 订阅
23 篇文章 0 订阅

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

本期话题:切比雪夫(最小区域法)圆拟合算法

相关背景和理论
点击前往
主要介绍了应用背景和如何转化成线性规划问题

在这里插入图片描述

圆拟合输入和输出要求

输入

  1. 10到631个点,全部采样自2D圆附近。
  2. 每个点3个坐标,坐标精确到小数点后面20位,最后1个坐标为0。
  3. 坐标单位是mm, 范围[-500mm, 500mm]。

输出

  1. 圆心1点C,用三个坐标表示。
  2. 半径r。
  3. 圆度F,所有点到圆距离最大的2倍。

F的最小区域法理解
在这里插入图片描述

黑色为点云。

对于圆来讲,最小区域是指用两个同心圆夹住点云,使得圆之间的半径之差最小。这个最小值就是F。拟合结果就是两圆中间的圆(橙色圆)。

精度要求

  1. C点到标准圆心距离不能超过0.0001mm。
  2. r与标准半径的差不能超过0.0001mm。
  3. F与标准圆度误差不能超过0.00001mm。

圆优化标函数

根据认证要求,圆拟合转化成数学表示如下:

圆参数化表示

  1. 圆心C = (x0, y0,0)。
  2. 半径r。

圆方程 ( x − x 0 ) 2 + ( y − y 0 ) 2 = r 2 圆方程 (x-x_0)^2+(y-y_0)^2=r^2 圆方程(xx0)2+(yy0)2=r2

点到圆距离

第i个点 pi(xi, yi, 0)。

根据定义得到距离

d i = ∥ ( p i − X 0 ) ∥ − r d_i =\left \| (p_i-X_0) \right \|-r di=(piX0)r

展开一下:

d i = r i − r d_i = r_i -r di=rir

r i = ( x i − x 0 ) 2 + ( y i − y 0 ) 2 r_i = \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2} ri=(xix0)2+(yiy0)2

优化能量方程

能量方程 H = f ( X 0 , r ) = max ⁡ 1 n ∣ d i ∣ H=f(X0, r)=\displaystyle \max_1^n {|d_i|} H=f(X0,r)=1maxndi

上式是一个4元二次函数中,X0, r是未知量,拟合2D圆的过程也可以理解为优化X0, r使得方程E最小。

可以对上述方程求导,使得导数等于0取得最值。但是求导后会变成一个比较复杂的方程组,不好解。可以使用高斯牛顿迭代法来求解。

转化为线性规划

设 a = ( x 0 , y 0 , r ) , d i = F ( x i ;   a ) , 引入 Γ = M A X i = 1 n    ∣ d i ∣ 设a=(x_0, y_0, r), d_i=F(x_i;\ a), 引入\Gamma=\overset n{\underset {i=1}{MAX}}\;|d_i| a=(x0,y0,r),di=F(xi; a),引入Γi=1MAXndi

根据上述定义,可以将原来的最值问题转化为下述条件

对于所有点应该满足

F ( x i ;   a ) ≤ Γ , ( F ( x i ;   a ) > 0 ) F(x_i;\ a)\le \Gamma, (F(x_i;\ a)>0) F(xi; a)Γ,(F(xi; a)>0)

− F ( x i ;   a ) ≤ Γ , ( F ( x i ;   a ) < 0 ) -F(x_i;\ a)\le \Gamma, (F(x_i;\ a)<0) F(xi; a)Γ,(F(xi; a)<0)

我们可以通过小量迭代慢慢减小Γ

m a x      Δ Γ s . t .     F ( x i , a ) + J Δ a ≤ Γ − Δ Γ , ( i = 1 , 2... n )           − ( F ( x i , a ) + J Δ a ) ≤ Γ − Δ Γ , ( i = 1 , 2... n ) Δ Γ ≥ 0 \begin {array}{c}max \ \ \ \ \Delta {\Gamma}\\ s.t.\ \ \ F(x_i, a) + J\Delta a \le \Gamma -\Delta \Gamma, (i=1,2...n)\\ \ \ \ \ \ \ \ \ \ -(F(x_i, a) + J\Delta a) \le \Gamma -\Delta \Gamma, (i=1,2...n)\\ \Delta \Gamma \ge0\end{array} max    ΔΓs.t.   F(xi,a)+JΔaΓΔΓ,(i=1,2...n)         (F(xi,a)+JΔa)ΓΔΓ,(i=1,2...n)ΔΓ0

上述条件不需要管 F ( x i , a ) + J Δ a 正负情况,若 F ( x i , a ) + J Δ a 为正 − ( F ( x i , a ) + J Δ a ) ≤ Γ − Δ Γ 必成立,反之亦然。 上述条件不需要管F(x_i, a) + J\Delta a正负情况,若F(x_i, a) + J\Delta a为正-(F(x_i, a) + J\Delta a) \le \Gamma -\Delta \Gamma必成立,反之亦然。 上述条件不需要管F(xi,a)+JΔa正负情况,若F(xi,a)+JΔa为正(F(xi,a)+JΔa)ΓΔΓ必成立,反之亦然。
求解出以后更新a, Γ。

对线性规划模型标准化

需要对 Δ x 0 , Δ y 0 , Δ r 拆解,要求变量都要大于等于 0 需要对\Delta x_0, \Delta y_0, \Delta r 拆解,要求变量都要大于等于0 需要对Δx0,Δy0,Δr拆解,要求变量都要大于等于0

m a x      Δ Γ s . t .     J i ⋅ [ Δ x 0 + - Δ x 0 - Δ y 0 + - Δ y 0 - Δ r + − Δ r − ] + Δ Γ ≤ Γ - d i , ( i = 1 , 2... n )        − J i ⋅ [ Δ x 0 + - Δ x 0 - Δ y 0 + - Δ y 0 - Δ r + − Δ r − ] + Δ Γ ≤ Γ + d i , ( i = 1 , 2... n ) Δ x 0 + , Δ x 0 − , Δ y 0 + , Δ y 0 − , Δ r , Δ Γ ≥ 0 ( 1 ) \begin {array}{c}max \ \ \ \ \Delta {\Gamma}\\ s.t.\ \ \ J_i \cdot \begin {bmatrix} \Delta x_0^+-\Delta x_0^-\\ \Delta y_0^+-\Delta y_0^-\\ \Delta r^+- \Delta r^- \end{bmatrix} +\Delta \Gamma\le \Gamma-d_i, (i=1,2...n)\\\\ \ \ \ \ \ \ -J_i \cdot \begin {bmatrix} \Delta x_0^+-\Delta x_0^-\\ \Delta y_0^+-\Delta y_0^-\\ \Delta r^+- \Delta r^- \end{bmatrix}+\Delta \Gamma\le \Gamma+d_i, (i=1,2...n)\\ \Delta x_0^+, \Delta x_0^-, \Delta y_0^+, \Delta y_0^-, \Delta r, \Delta \Gamma \ge0\end{array} (1) max    ΔΓs.t.   Ji Δx0+Δx0Δy0+Δy0Δr+Δr +ΔΓΓdi,(i=1,2...n)      Ji Δx0+Δx0Δy0+Δy0Δr+Δr +ΔΓΓ+di,(i=1,2...n)Δx0+,Δx0,Δy0+,Δy0,Δr,ΔΓ0(1)

算法描述

回顾一下

d i = r i − r d_i = r_i -r di=rir

r i = ( x i − x 0 ) 2 + ( y i − y 0 ) 2 r_i = \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2} ri=(xix0)2+(yiy0)2

J, D的计算。

3个未知分别对d_i求导结果如下:

∂ d i ∂ x 0 = 1 2 ( x i − x 0 ) 2 + ( y i − y 0 ) 2 ⋅ ( x i − x 0 ) ⋅ − 1 = − ( x i − x 0 ) / r i \frac {\partial d_i} {\partial x_0}=\frac {1} {2 \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2}}\cdot(x_i-x_0)\cdot -1 = -(x_i-x_0)/r_i x0di=2(xix0)2+(yiy0)2 1(xix0)1=(xix0)/ri

∂ d i ∂ y 0 = 1 2 ( x i − x 0 ) 2 + ( y i − y 0 ) 2 ⋅ ( y i − y 0 ) ⋅ − 1 = − ( y i − y 0 ) / r i \frac {\partial d_i} {\partial y_0}=\frac {1} {2 \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2}}\cdot(y_i-y_0)\cdot -1 = -(y_i-y_0)/r_i y0di=2(xix0)2+(yiy0)2 1(yiy0)1=(yiy0)/ri

∂ d i ∂ r = − 1 \frac {\partial d_i} {\partial r}=-1 rdi=1

一次迭代过程

  1. 确定圆初值,Γ,使用高斯拟合点击前往

  2. 根据上述公式(1)构建线性规划方程

  3. 求解 Δ p \Delta p Δp

  4. 更新解
    x 0 = x 0 + p x 0 y 0 = y 0 + p y 0 r = r + p r Γ = Γ − Δ Γ \begin {array}{c} x_0 = x_0+p_{x_0} \\y_0 = y_0+p_{y_0} \\ r=r+p_r \\ \Gamma = \Gamma-\Delta \Gamma \end {array} x0=x0+px0y0=y0+py0r=r+prΓ=ΓΔΓ

  5. 重复2直到收敛

最后,输出时F=2*Γ

代码实现

代码链接:https://gitcode.com/chenbb1989/3DAlgorithm/blob/master/CBB3DAlgorithm/Fitting/chebyshev/CircleFitter.cpp

拟合代码


namespace Chebyshev {
	double CircleFitter::F(Fitting::Circle2D circle, const Point& p)
	{
		auto de = Eigen::Vector2d(p.x(), p.y()) - circle.center;
		return de.norm() - circle.r;
	}

	double CircleFitter::GetError(Fitting::Circle2D circle, const std::vector<Eigen::Vector3d>& points)
	{
		double err = 0;
		for (auto& p : points) {
			err = std::max(err, abs(F(circle, p)));
		}

		return err;
	}

	Fitting::Matrix CircleFitter::Jacobi(const std::vector<Eigen::Vector3d>& points)
	{
		Fitting::Matrix J(points.size(), 3);
		for (int i = 0; i < points.size(); ++i) {
			Eigen::Vector2d p = { points[i].x() - circle.center.x(),points[i].y() - circle.center.y() };
			J(i, 0) = -p.x() / p.norm();
			J(i, 1) = -p.y() / p.norm();
			J(i, 2) = -1;
		}
		return J;
	}

	void CircleFitter::beforHook(const std::vector<Eigen::Vector3d>& points)
	{}

	void CircleFitter::afterHook(const Eigen::VectorXd& xp)
	{
		circle.center += Eigen::Vector2d(xp(0), xp(1));
		circle.r += xp(2);
		gamma -= xp(3);
	}
	Eigen::VectorXd CircleFitter::getDArray(const std::vector<Eigen::Vector3d>& points)
	{
		Eigen::VectorXd D(points.size());
		for (int i = 0; i < points.size(); ++i)D(i) = F(circle, points[i]);
		return D;
	}
	bool CircleFitter::GetInitFit(const std::vector<Eigen::Vector3d>& points)
	{
		if (points.size() < 3)return false;
		Fitting::FittingBase* fb = new Gauss::FittingCircle2D();
		fb->Fitting(points, &circle);
		delete fb;

		gamma = GetError(circle, points);
		return true;
	}
	double CircleFitter::F(const Eigen::Vector3d& p)
	{
		return Chebyshev::CircleFitter::F(circle, p);
	}
	double CircleFitter::GetError(const std::vector<Eigen::Vector3d>& points)
	{
		return Chebyshev::CircleFitter::GetError(circle, points);
	}
	void CircleFitter::Copy(void* ele)
	{
		memcpy(ele, &circle, sizeof(Fitting::Circle2D));
	}
	CircleFitter::CircleFitter()
	{
		ft = Fitting::FittingType::CHEBYSHEV;
	}
}

测试结果

https://gitcode.com/chenbb1989/3DAlgorithm/blob/master/CBB3DAlgorithm/Fitting/chebyshev/chebyshev-testdata/officialtest/fitting_result/result.txt
C09 : CIRCLE_2D : pass
C10 : CIRCLE_2D : pass
C11 : CIRCLE_2D : pass
C12 : CIRCLE_2D : pass
C13 : CIRCLE_2D : pass
C14 : CIRCLE_2D : pass
C15 : CIRCLE_2D : pass
C16 : CIRCLE_2D : pass


本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。

  • 19
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值