一、二叉树的遍历
二叉树的遍历(traversing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。
二叉树的遍历次序不同于线性结构,线性结构最多也就是分为顺序、循环、双向等简单的遍历方式。
树的结点之间不存在唯一的前驱和后继这样的关系,在访问一个结点后,下一个被访问的结点面临着不同的选择。这就像我们的人生,漫漫长途上一步踏错满盘皆输!
二叉树的遍历方法
二叉树的遍历方式可以很多,如果我们限制了从左到右的习惯方式,那么主要就分为一下四种:
一前序遍历
一中序遍历
一后序遍历
一层序遍历
前序遍历:
一若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。
遍历的顺序为:ABDHIEJCFKG
中序遍历:
一若树为空,则空操作返回,否则从根结点开始(注意并不是先访问根结点),中序遍历根结点的左子树,然后是访问根结点,最后中序遍历右子树。
遍历的顺序为:HDIBEJAFKCG
后序遍历:
一若树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后访问根结点。
遍历的顺序为:HIDJEBKFGCA
层序遍历:
一若树为空,则空操作返回,否则从树的第一层,也就是根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。
遍历的顺序为:ABCDEFGHIJK
线索二叉树
中序遍历
她需要一丁点儿提示,为此我们将已经定义好的结构进行“扩容”:
- ltag为0时指向该结点的左孩子,为1时指向该结点的前驱。
- rtag为0时指向该结点的右孩子,为1时指向该结点的后继。
树、森林及二叉树的相互转换
普通树转换为二义树
步骤如下:
一加线,在所有兄弟结点之间加一条连线。
一去线,对|树中每个结点,只保留它与第一孩子结点的连线,删除它与其他孩子结点之间的连线。
一层次调整,以树的根结点为轴心,将整棵树顺时针旋转一定的角度,使之结构层次分明。
森林转换为二义树
步骤如下:
一把每棵树转换为二义树。
一第一棵二叉树不动,从第三棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树的根结点的右孩子,用线连接起来。
二又树转换为树、森林
二叉树转换为普通树是刚才的逆过程,步骤也就是反过来做而已。
判断一棵二叉树能够转换成一棵树还是森林,标准很简单,那就是只要看这棵二叉树的根结点有没有右孩子,有的话就是森林,没有的话就是一棵树。
树与森林的遍历
树的遍历分为两种方式:一种是先根遍历,另一种是后根遍历。
先根遍历: 先访问树的根结点,然后再依次先根遍历根的每棵子树。
后根遍历: 先依次遍历每棵子树,然后再访问根结点。
先根遍历结果:ABEFCGDHIJ
后根遍历结果: EFBGCHIJDA
森林的遍历也分为前序遍历和后序遍历,其实就是按照树的先根遍历和后根遍历依次访问森林的每一棵树。
我们的惊人发现:树、森林的前根(序)遍历和二叉树的前序遍历结果相同,树、森林的后根(序)遍历和二叉树的中序遍历结果相同!
赫夫曼树
在数据膨胀、信息爆炸的今天,数据压缩的意义不言而喻。谈到数据压缩,就不能不提赫夫曼(Huffman)编码,赫夫曼编码是首个实用的压缩编码方案,即使在今天的许多知名压缩算法里,依然可以见到赫夫曼编码的影子。
赫夫曼树定义与原理
最优二叉树就是赫夫曼树。我们先把这两棵二叉树简化成叶子结点带权的二叉树(注:树结点间的连线相关的数叫做权,weight) 。
构造赫夫曼树
结点的路径长度:
一从根结点到该结点的路径上的连接数。
树的路径长度:
一树中每个叶子结点的路径长度之和。
结点带权路径长度:
一结点的路径长度与结点权值的乘积。
树的带权路径长度:
一 WPL(Weighted Path Length)是树中所有叶子结点的带权路径长度之和。WPL的值越小,说明构造出来的二叉树性能越优。
名词解释:定长编码,变长编码,前缀码
一定长编码: 像ASCII编码
一变长编码:单个编码的长度不一致,可以根据整体出现频率来调节
一前缀码:所谓的前缀码,就是没有任何码字是其他码字的前缀