TSN泛读【Temporal Segment Networks: Towards GoodPractices for Deep Action Recognition】

本文介绍了TSN(时间分段网络)在视频动作识别中的应用,该框架通过稀疏时间抽样和视频级监督,有效捕捉长期时间结构。研究发现,TSN结合一系列优化技巧,能提高模型性能并在HMDB51和UCF101数据集上取得SOTA,同时避免过拟合。通过模型可视化,验证了其有效性。

目录

0、前沿

1、标题

2、摘要

3、结论

4、重要图表

5、解决了什么问题

6、采用了什么方法

7、达到了什么效果


0、前沿

        泛读我们主要读文章标题,摘要、结论和图表数据四个部分。需要回答用什么方法,解决什么问题,达到什么效果这三个问题。 需要了解更多视频理解相关文章可以关注视频理解系列目录了解当前更新情况。

        TSN论文下载:

https://arxiv.org/pdf/1608.00859.pdfhttps://arxiv.org/pdf/1608.00859.pdf

1、标题

        Temporal Segment Networks: Towards Good Practices for Deep Action Recognition

        时间分段网络:深度视频动作识别实用技巧

2、摘要

        Deep convolutional networks have achieved great success for visual recognition in still images. However, for action recognition in videos, the advantage over traditional methods is not so evident. This paper aims to discover the principles to design effective ConvNet architectures for action recognition in videos and learn these models given limited training samples.

        

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值