区域生长法分割

区域分割

区域生长法

区域生长法的基本思想就是将具有相似性的像素集合起来形成一个区域。
具体做法就是,首先选择一个种子点,通过比较种子点邻域的相似性,将邻域中满足相似性准则的像素归入种子点所在的区域,然后将这新的像素点定为种子点,重复上述过程,直到没有满足相似性准则的新的邻域像素点产生为止。通过区域生长,一个区域就形成了。
有三个关键性的问题:
1.种子点的选择问题,如何选择代表所需区域的种子点?
借助具体问题的特点来进行选择。
2.生长过程中停止生长的条件是什么?
一般是再没有满足生长准则的像素产生为止。
3.如何判断相邻两个像素是否是相似的呢?
①基于区域灰度差的方法。
1)对所有的像素进行扫描,找出尚没有归属的像素点。
2)对这像素点的所有邻域像素进行灰度差,找出灰度差满足某一阈值的邻域像素,将他们合并。
3)以新合并的像素为新的中心,进行步骤2)。检查新像素的邻域,直到区域不能继续扩张为止。
4)返回步骤1),继续扫描,直到所有像素都有归属为止。
改进–>该方法对于生长起点的选择具有很大的依赖性。将灰度差阈值设为0,这样所有灰度值相同的像素点就形成了一个区域。然后比较相邻区域之间的平均灰度差,将平均灰度差小于阈值的区域进行合并。问题:对于变化缓慢的相邻区域,会产生错分割。
改进–>在进行区域生长时,不使用新像素点的灰度值与其邻域进行比较,而是使用新像素点所在的区域的平均灰度值与其邻域的像素点的灰度值进行比较,选择满足阈值的点进行合并。
②以灰度分布的相似性为准则。
1)将像素分成互不重叠的小区域。
2)比较相邻区域的累计灰度直方图,即比较灰度分布的相似性。参考https://blog.csdn.net/combfish/article/details/45056239
其实累积直方图就是对直方图分布进行归一化处理。将小于阈值的两个相邻区域进行合并。
3)设定终止准则,通过反复步骤2),依次将各个区域进行合并。

区域生长法的优点是:计算简单,比较适合分割均匀的小结构,往往与其他分割方法联合使用。
缺点是:对初始种子点的依赖性,而且对噪声比较敏感,出现分割空洞或者过分割。

### 使用区域生长法对点云进行分割 #### 原理概述 区域生长是一种常用的点云分割方法,其基本思想是从一个或多个种子点出发,在满足一定条件的情况下逐步扩展到邻近点,直到无法继续增长为止。这种方法特别适用于处理具有连续表面特征的物体[^1]。 对于点云数据而言,通常会先计算每个点的局部几何特性(如曲率),并以此为基础选取初始种子点。具体来说,会选择那些位于最平滑区域内的点作为起始位置,因为这些地方往往对应于目标对象上较为平坦的部分[^2]。 当确定好种子之后,则按照预先设定的标准来判断哪些周围的点应该被加入当前正在形成的区域内;常见的准则包括但不限于两点间距离阈值以及它们之间的法向量夹角大小等参数设置[^5]。 #### 实现过程 下面给出一段利用 PCL 库实现上述思路的具体 Python 代码: ```python import pcl from pcl import PointCloud_PointXYZRGB, RegionGrowingRGB def region_growing_segmentation(cloud): # 创建RegionGrowing对象实例化 reg = cloud.make_region_growing() # 设置搜索半径范围 reg.set_search_radius(0.03) # 定义最大与最小聚类尺寸限制 reg.set_min_cluster_size(50) reg.set_max_cluster_size(1000000) # 设定用于评估相似性的颜色权重因子 reg.set_number_of_clusters(8) # 执行实际分段操作 clusters = reg.extract() return clusters ``` 此函数接收输入为 `PointCloud` 类型变量表示待处理三维空间坐标集合,并返回由若干子集构成的结果列表形式输出。其中涉及到了几个重要配置项的选择:通过调整 `set_search_radius()` 函数指定考虑范围内邻居节点的最大允许间距;而为了防止过拟合现象发生还分别设定了上下限约束(`min/max cluster size`) 来控制最终得到各个独立部分所含元素数量区间。 另外值得注意的是,在某些应用场景下还可以引入额外的颜色信息辅助完成更精细程度上的分类工作,这便是为什么上面例子中有提到关于色彩贡献度方面的考量因素之一[^4]。 #### 数据保存 一旦完成了整个流程中的所有步骤并且获得了满意的实验成果后,就可以参照欧式聚类保存方式将所得出的新结构持久化存储下来以便后续分析使用了[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值