区域生长法分割

区域分割

区域生长法

区域生长法的基本思想就是将具有相似性的像素集合起来形成一个区域。
具体做法就是,首先选择一个种子点,通过比较种子点邻域的相似性,将邻域中满足相似性准则的像素归入种子点所在的区域,然后将这新的像素点定为种子点,重复上述过程,直到没有满足相似性准则的新的邻域像素点产生为止。通过区域生长,一个区域就形成了。
有三个关键性的问题:
1.种子点的选择问题,如何选择代表所需区域的种子点?
借助具体问题的特点来进行选择。
2.生长过程中停止生长的条件是什么?
一般是再没有满足生长准则的像素产生为止。
3.如何判断相邻两个像素是否是相似的呢?
①基于区域灰度差的方法。
1)对所有的像素进行扫描,找出尚没有归属的像素点。
2)对这像素点的所有邻域像素进行灰度差,找出灰度差满足某一阈值的邻域像素,将他们合并。
3)以新合并的像素为新的中心,进行步骤2)。检查新像素的邻域,直到区域不能继续扩张为止。
4)返回步骤1),继续扫描,直到所有像素都有归属为止。
改进–>该方法对于生长起点的选择具有很大的依赖性。将灰度差阈值设为0,这样所有灰度值相同的像素点就形成了一个区域。然后比较相邻区域之间的平均灰度差,将平均灰度差小于阈值的区域进行合并。问题:对于变化缓慢的相邻区域,会产生错分割。
改进–>在进行区域生长时,不使用新像素点的灰度值与其邻域进行比较,而是使用新像素点所在的区域的平均灰度值与其邻域的像素点的灰度值进行比较,选择满足阈值的点进行合并。
②以灰度分布的相似性为准则。
1)将像素分成互不重叠的小区域。
2)比较相邻区域的累计灰度直方图,即比较灰度分布的相似性。参考https://blog.csdn.net/combfish/article/details/45056239
其实累积直方图就是对直方图分布进行归一化处理。将小于阈值的两个相邻区域进行合并。
3)设定终止准则,通过反复步骤2),依次将各个区域进行合并。

区域生长法的优点是:计算简单,比较适合分割均匀的小结构,往往与其他分割方法联合使用。
缺点是:对初始种子点的依赖性,而且对噪声比较敏感,出现分割空洞或者过分割。

### 基于区域生长法的图像分割 #### 区域生长算法简介 区域生长是一种经典的图像分割技术,其基本思想是从一组种子点出发,逐步将具有相似属性(如灰度值、颜色或纹理)的相邻像素合并到同一个区域内[^1]。这种方法适用于目标边界较为清晰的情况。 以下是基于 Python 的区域生长算法实现示例: #### 实现代码 ```python import numpy as np from skimage import data, filters, measure import matplotlib.pyplot as plt def region_growing(image, seed_points, threshold=5): """ 使用区域生长法进行图像分割 :param image: 输入的二维灰度图像 (numpy array) :param seed_points: 种子点列表 [(x1, y1), (x2, y2)...] :param threshold: 生长阈值 :return: 分割后的二值掩码 """ rows, cols = image.shape segmented = np.zeros_like(image, dtype=bool) # 初始化分割结果为全零矩阵 seeds_mask = np.zeros_like(image, dtype=bool) for point in seed_points: if 0 <= point[0] < rows and 0 <= point[1] < cols: seeds_mask[point[0], point[1]] = True stack = [] for i in range(rows): for j in range(cols): if seeds_mask[i, j]: stack.append((i, j)) segmented[i, j] = True while stack: current_point = stack.pop() neighbors = [ (current_point[0]-1, current_point[1]), (current_point[0]+1, current_point[1]), (current_point[0], current_point[1]-1), (current_point[0], current_point[1]+1) ] for neighbor in neighbors: if ( 0 <= neighbor[0] < rows and 0 <= neighbor[1] < cols and not segmented[neighbor[0], neighbor[1]] ): intensity_difference = abs(int(image[current_point]) - int(image[neighbor])) if intensity_difference < threshold: segmented[neighbor[0], neighbor[1]] = True stack.append(neighbor) return segmented # 测试代码 if __name__ == "__main__": img = data.coins() # 加载测试图像 gray_img = img.mean(axis=2).astype(np.uint8) if len(img.shape) > 2 else img # 转换为灰度图 seed_points = [(100, 100)] # 定义种子点 result = region_growing(gray_img, seed_points, threshold=10) fig, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].imshow(gray_img, cmap='gray') ax[0].set_title('Original Image') ax[1].imshow(result, cmap='gray') ax[1].set_title('Segmented Result') plt.show() ``` #### 算法讲解 上述代码实现了基于区域生长的图像分割功能。具体过程如下: - **输入准备**:接收一张灰度图像以及若干种子点作为初始条件。 - **初始化**:创建一个布尔类型的掩码数组 `segmented` 来记录已访问过的像素位置,并设置种子点为起始状态。 - **迭代扩展**:对于每个种子点及其邻近像素,计算当前像素与邻居之间的强度差值。如果该差值小于设定的阈值,则认为这些像素属于同一区域并将其加入栈中继续扩展。 - **终止条件**:当所有符合条件的像素都被标记完毕时停止循环。 尽管此方法能够较好地区分简单的目标区域,但由于实际场景中的噪声干扰等因素影响,可能会导致过分割或者欠分割现象发生。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值