工业 4.0 的定义
工业 4.0 是德国政府提出的一个高科技战略计划,旨在提升制造业的智能化水平,将制造业向智能化转型,它代表着第四次工业革命。该概念于 2013 年 4 月在汉诺威工业博览会上被正式推出,核心是通过充分利用信息通讯技术和网络空间虚拟系统 — 信息物理系统(Cyber-Physical Systems,简称 CPS)相结合的手段,推动制造业向智能化、自动化、网络化和定制化方向发展。
工业 4.0 的主要特点
互联:通过各种网络技术,让设备、机器、人和系统之间能够实现无缝连接与通信。例如在一个智能工厂里,生产线上的各个加工设备可以相互连接并和控制中心通信,实时传递自身的运行状态、加工数据等信息。
数据:海量的数据会在工业生产等环节被收集和产生,如设备运行参数、生产流程中的各类指标数据等。这些数据经过分析处理后能挖掘出有价值的信息,为优化生产、预测故障等提供依据。比如分析某台关键设备长时间运行的数据,可提前预测出可能发生故障的时间节点,以便提前安排维修保养。
集成:包括横向集成和纵向集成。横向集成是指企业内不同部门、不同业务环节之间的集成,例如设计部门、生产部门、销售部门等的数据和流程整合;纵向集成则是将产业链上不同层级,从底层的设备控制到顶层的企业管理系统等进行打通,实现一体化运作。
创新:催生新的商业模式、生产方式和产品类型等。像一些企业可以根据客户的个性化需求,快速调整生产线实现定制化生产,改变了以往大规模标准化生产的模式。
工业 4.0 涉及的关键技术
物联网(IoT):是工业 4.0 的基础支撑技术之一,众多设备通过嵌入传感器等装置接入网络,实现设备的智能化识别、定位、跟踪、监控和管理等。例如仓库中的货物通过贴上物联网标签,可以实时知晓货物的位置、存储状态等信息。
大数据与分析:收集和整理工业生产等环节产生的海量数据,并利用数据分析算法和工具,挖掘其中对生产优化、决策制定等有价值的信息。比如通过分析大量客户订单数据来调整生产计划和产品配置。
人工智能:像机器学习、深度学习等人工智能技术可用于产品质量检测、生产流程优化、设备故障预测等方面。以产品质量检测为例,通过训练好的深度学习模型,可以快速准确地识别产品表面的瑕疵,比人工检测效率更高、准确性更强。
云计算:为企业提供强大的计算资源和存储能力,企业无需自己构建庞大的数据中心,可按需使用云计算服务来存储和处理工业数据、运行相关软件等。
工业 4.0 带来的影响
对制造业企业:提高生产效率、降低生产成本、提升产品质量,能快速响应市场变化实现定制化生产,增强企业在市场中的竞争力。例如汽车制造企业可以根据客户对车辆配置的个性化要求,快速组织生产交付。
对就业市场:一方面会减少一些重复性劳动岗位,像传统流水线上从事单一操作的工人需求会下降;另一方面会催生大量与新技术相关的岗位,比如数据分析师、物联网工程师、人工智能算法工程师等,促使就业人员提升技能、适应新的就业形势。
对经济发展:推动制造业升级转型,提升整体产业的附加值,带动上下游相关产业协同发展,促进区域经济乃至全球经济的增长和结构优化。
总之,工业 4.0 正在深刻地改变着制造业以及与之相关的各个领域,引领着全球工业迈向一个新的智能化时代。