[宋史学习] 太宗是否好色

主要是王立群老师节目的笔记。

太宗自己宣称不好色
  • 宣称自己不好色。

    宣称自己的理想,“朕以济世为心,视妻妾似脱屣,恨不能离世绝俗,追踪羡门、王乔,必不学秦皇汉武,作离宫别馆,取良家子以充其中,贻万代讥议。” 宋太宗是自己每天都想着要济世安民,那些妃嫔他根本没当回事,像脱掉鞋子一样。

  • 宣称自己后宫只有300人。

    这里要注意一点,太宗必须要各种事情上都超过他哥哥,至少要一致。这样才能证明自己篡位正确性。

    太祖时候,宫人有280人,后来又遣返了50人。

    所以,太宗就说自己后宫只有300人,他不敢往多了说。

但是,实际上很多地方都暴露了他非常好色。

绯闻女友

太宗与小周后的绯闻更是轰动一时。小周后是南唐后主李煜的妻子,长得非常漂亮,引起了宋太宗的垂涎。

于是,宋太宗经常召小周后入宫,“每一入辄数日而出”。小周后回家后,每次都哭着大骂李煜,“声闻于外,多宛转避之”。

强抢民女

在成为皇帝前,赵光义仗着自己是开封府的府尹,相中一个告状人的女儿,居然派自己的手下安习抢到自己的府中。这件事后来惊动宋太祖,安习遭到了缉捕,不过他逃到了赵光义的府中。

有人劝谏

有人直接向皇帝上书提意见。此人名叫武程,是雍邱县的县尉,于淳化四年六月向宋太宗上了一道奏折,他请求皇帝能够削减后宫中妃嫔的数量,劝减少300人。

如果只有300人,人家至于劝谏嘛。

儿子揭穿谎言

直接揭穿太宗的人是他的儿子真宗。

刚成为皇帝不久的宋真宗下发了一道诏书,“后宫妃御颇多,幽闭可闵,朕已令择给事岁深者放出之”。

内容很好理解,后宫里面的妃嫔太多了,当然都是他父皇宋太宗的,幽闭在后宫非常可怜,所以宋真宗下诏让有关部门将一部分人释放出来。四年前,宋太宗还说“内庭给使不过三百人”,然而却被自己的儿子打脸,“后宫妃御颇多”。虽然,宋真宗没有说明具体数量,但肯定要远远超过三百人!

晚年不好色

这是被逼的,因为高粱河一战,中了两箭,所以一直发作,让他注重养生,所以远离女色。

### 改进UNet模型以适应宋史相关数据 #### 数据预处理 对于特定领域如宋史的数据,数据预处理阶段至关重要。考虑到历史文档可能存在的特殊字符、古汉语表达方式以及手写体识别等问题,可以采用专门针对这些特点的技术手段来增强模型的表现力[^1]。 ```python import cv2 from skimage import io, transform def preprocess_image(image_path): image = io.imread(image_path, as_gray=True) resized_image = transform.resize(image, (target_height, target_width)) normalized_image = (resized_image - np.mean(resized_image)) / np.std(resized_image) return normalized_image ``` #### 更换激活函数 为了提高模型对复杂特征的学习能力,在原有基础上尝试替换不同类型的激活函数是一个有效的策略。例如ReLU及其变种Leaky ReLU可以在一定程度上缓解梯度消失问题;而像Swish这样新型的自门控激活函数则能进一步提升性能表现[^2]。 ```python class UNetBlock(nn.Module): def __init__(self, in_channels, out_channels, activation=nn.ReLU(inplace=True)): super(UNetBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), padding='same') self.actv1 = activation self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=(3, 3), padding='same') self.actv2 = activation def forward(self, x): y = self.conv1(x) y = self.actv1(y) z = self.conv2(y) output = self.actv2(z) return output ``` #### 特征融合机制 引入多尺度上下文信息有助于捕捉到更多细节层次上的变化规律,这对于理解古代文献中的细微差别尤为重要。可以通过设计更精细的空间金字塔池化模块(SPP),或者借鉴DenseNet的思想增加跨层连接等方式实现这一点。 #### 自定义损失函数 鉴于宋史资料可能存在标注不一致的情况,调整损失计算方法也是必要的考虑因素之一。比如利用Dice系数作为补充评价指标,它特别适合于衡量二分类任务下的区域重叠程度,从而帮助改善边界模糊样本点预测精度不足的问题。 ```python def dice_loss(preds, targets, smooth=1e-7): intersection = torch.sum(targets * preds) union = torch.sum(targets) + torch.sum(preds) score = (2.0 * intersection + smooth) / (union + smooth) loss = 1.0 - score return loss ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值