【空间描述与位姿变换】(台大林沛群课程学习笔记)持续更新~

12 篇文章 6 订阅
1 篇文章 0 订阅

Word Text:
rotation matrix:旋转矩阵
identity matrix:单位阵
orthogonal matrix:正交矩阵

位姿:位置和姿态的组合。

映射:从一个坐标系到另一个坐标系的变换。

移动

(描述空间中运动的绝对位置)

image20211026160707567

转动

(每一个轴向量在A坐标系下的投影)

image20211026161915737

找出B相对A的旋转矩阵:

image20211026162227708

image20211026162759539

quiz:

image20211026165204441

旋转矩阵的正交特性

1.旋转矩阵各列的模均为1,且这些单位矢量均相互正交。

B A R = A B R T _B^AR=_A^BR^T BAR=ABRT

image20211026170107788

B A R T = B A R − 1 = A B R _B^AR^T=_B^AR^{-1}=_A^BR BART=BAR1=ABR

(求旋转矩阵逆矩阵时,直接求很难求,直接用转置就行了)

image20211026191102248

coordinate:坐标

旋转矩阵推导过程

​ P在A下面的表达,就等于P*B对A的Rotation Matrix,原矢量在空间中无变化,我们只不过求出了这个矢量相对于A坐标系的新描述。
A P = B A R    B P ^AP=_B^AR\;^BP % \; 是中等空格的意思。 AP=BARBP
image20211026195234855

旋转矩阵的第三个功能,描述旋转

定轴(绕 Z轴 X轴 Y轴)旋转,表示方法:
R Z ^ A ( θ ) = [ c o s θ − s i n θ 0 s i n θ c o s θ 0 0 0 1 ] R X ^ A ( θ ) = [ 1 0 0 0 c o s θ − s i n θ 0 s i n θ c o s θ ] R Y ^ A ( θ ) = [ c o s θ 0 s i n θ 0 1 0 − s i n θ 0 c o s θ ] R_{\widehat Z_A}(θ)=\begin{bmatrix} cosθ & -sinθ & 0 \\ sinθ & cosθ & 0 \\ 0 & 0 & 1 \end{bmatrix} R_{\widehat X_A}(θ)=\begin{bmatrix} 1 & 0 & 0 \\ 0 & cosθ & -sinθ \\ 0 & sinθ & cosθ \end{bmatrix} R_{\widehat Y_A}(θ)=\begin{bmatrix} cosθ & 0 & sinθ \\ 0 & 1 & 0 \\ -sinθ & 0 & cosθ \end{bmatrix} RZ A(θ)=cosθsinθ0sinθcosθ0001RX A(θ)=1000cosθsinθ0sinθcosθRY A(θ)=cosθ0sinθ010sinθ0cosθ

image20211026202215871

image20211026215236425

应用:

image20211027104045143

旋转矩阵的三种用法总结:

1.描述一个坐标系相对于另一个坐标系的姿态。

2.将点/向量由某一个坐标系的表达转换到另一个和此坐标系具有相对转动关系的坐标系来表达。

3.将点/向量在同一个坐标系中进行转动。(用作旋转算子)

image20211027104601924

将一般旋转矩阵所表达的姿态,拆成三次旋转角度:

image20211027105519426

Fixed angles(先乘的放后面,后乘的放前面)

image20211027132518309

image20211027134143118

由fixed angles旋转矩阵,反推角度 :

image20211027134938123

image20211027135203624

Euler angles(先乘的放前面,后乘的放后面)

image20211027141120871

结论:固定角xyz转和欧拉角zyx转,得到的R相等

image20211027142305519

结论:欧拉角先后转的顺序不一样,得到得结果也不一样。这一点和固定角相同。

image20211027143031799

验证了fixed的正转和euler的反转,会得到相同的解。

image20211027144536751

euler angles YZY转法

image20211027144808274

euler angles已知R反求 角度

image20211027145324867

euler xy转法得到的R,用euler zyz的公式反解,也能得到一组解,说明,同一空间位姿可以通过不同转法得到相同的R。

image20211027150216774

将移动和转动整合

B A T M a p i n g _B^AT\quad Maping BATMaping

image20211027150900728

image20211027151310439

image20211027151849469

image20211027152144237

image20211027160618477

齐次变换矩阵T的几何验证
B A T O p e r a t o r _B^AT \quad Operator BATOperator

T的建立方式,先转动,再移动。

image20211027203657596

image20211027204045357

先转动再移动和先移动再转动结果不同

image20211028102136474

image20211028104044153

Transformation Matrix连续运算

image20211028124022802

T的逆 推导过程
A B T = B A T − 1 = [ B A R − B A R T   A P B   o r g 0   0   0 1 ] _A^BT=_B^AT^{-1}=\begin{bmatrix} _B^AR & -_B^AR^T\,^AP_{B}\,org \\ 0 \ 0 \ 0 & 1 \end{bmatrix} % 中括号 ABT=BAT1=[BAR0 0 0BARTAPBorg1]
image20211028125947328

image20211028131414792

image20211028133226129

类比固定角和欧拉角。

image20211028133553314

齐次变换矩阵的三种解释:

1)他是位姿的描述。 B A T {_B^AT} BAT表示相对于坐标系{A}的坐标系{B}。特别的, B A R _B^AR BAR的各列是定义{B}主轴方向的单位矢量, A P B O R G ^AP_{BORG} APBORG确定了{B}的原点。

2)他是变换映射。 B A T _B^AT BAT是映射 B P ^BP BP -> A P ^AP AP

3)他是变换算子。T将 A P 1 ^AP_1 AP1变换为 A P 2 ^AP_2 AP2

​ 位姿和变换都可以用位置矢量加上姿态来描述。一般来说位姿主要是用于描述,而变换常用来表示映射或算子。变换是平移和旋转的一般形式;但有时在纯旋转(或纯平移)的情况下也常用变换这个术语。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值