剑指offer 13:机器人的运动范围

该博客讨论了一个关于机器人在二维网格中移动的问题,其中机器人只能向左、右、上、下移动且不能进入行和列坐标的数位之和超过特定阈值的格子。文章提供了两种解决方案,都是基于深度优先搜索(DFS)的算法,并指出可以进一步优化,只从下和右两个方向进行搜索。解法包括检查边界、避免重复访问和计算坐标和的函数。示例给出了不同输入和返回值的情况,展示了算法的正确性和效率。
摘要由CSDN通过智能技术生成

题目描述:

地上有一个 rows 行和 cols 列的方格。坐标从 [0,0] 到 [rows-1,cols-1] 。一个机器人从坐标 [0,0] 的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于 threshold 的格子。 例如,当 threshold 为 18 时,机器人能够进入方格   [35,37] ,因为 3+5+3+7 = 18。但是,它不能进入方格 [35,38] ,因为 3+5+3+8 = 19 。请问该机器人能够达到多少个格子?

数据范围:  0<=threshold<=15,1<=rows,cols<=100

进阶:空间复杂度  O(nm),时间复杂度   O(nm)

示例1

输入:1,2,3

返回值:3

示例2

输入:0,1,3

返回值:1

示例3

输入:10,1,100

返回值:29

说明:

[0,0],[0,1],[0,2],[0,3],[0,4],[0,5],[0,6],[0,7],[0,8],[0,9],[0,10],[0,11],[0,12],[0,13],[0,14],[0,15],[0,16],[0,17],[0,18],[0,19],[0,20],[0,21],[0,22],[0,23],[0,24],[0,25],[0,26],[0,27],[0,28] 这29种,后面的[0,29],[0,30]以及[0,31]等等是无法到达的

示例4

输入:5,10,10

返回值:21

解法:

思路:

根据DFS,从数组的左上角位置出发,朝一个方向一直查找,直到出现不符合条件的,然后回溯到上一个节点,换个方向继续搜索。对于数组中的每个位置,对它的上下左右都需要进行查找。这里需要的注意的就是:

(1)创建一个新的二维数组,记录数组中每个元素的访问状态。

(2)检查下标,越界直接返回0即可。

(3)检查当前坐标的i, j之和是否大于threshold,如果大于直接返回0。

(4)检查当前元素是否被访问过。

代码:

public class Solution {
    int count = 1;
    public int movingCount(int threshold, int rows, int cols) {
        //用来标记当前位置是否被访问
        boolean[][] visited = new boolean[rows][cols];
        return dfs(0, 0, threshold, visited);
    }
    //i  j :起始坐标   
    public int dfs(int i, int j, int threshold, boolean[][] visited){
        //越界、该位置被访问,下标之和大于threshold直接返回0
        if(i < 0 || i >= visited.length || j < 0 || j >= visited[0].length || threshold < isRange(i, j) || visited[i][j]){
            return 0;
        }
        //表示当前位置被访问
        visited[i][j] = true;
        //从当前位置的上左下右四个方位分别进行查找
        return 1 + dfs(i+1, j, threshold, visited) + dfs(i, j+1, threshold, visited) + dfs(i-1, j, threshold, visited) + dfs(i, j-1, threshold, visited);
    }
    //计算下标之和
    public int isRange(int i, int j){
        int sum = 0;
        while(i > 0){
            sum += i % 10;
            i /= 10;
        }
        while(j > 0){
            sum += j % 10;
            j /= 10;
        }
        return sum;
    }
}

该代码还可以优化,即:从元素的下和右两个方向进行搜索,而不必从上下左右四个方向都查找。

public class Solution {
    int count = 1;
    public int movingCount(int threshold, int rows, int cols) {
        //用来标记当前位置是否被访问
        boolean[][] visited = new boolean[rows][cols];
        return dfs(0, 0, threshold, visited);
    }
    //i  j :起始坐标   
    public int dfs(int i, int j, int threshold, boolean[][] visited){
        //越界、该位置被访问,下标之和大于threshold直接返回0
        if(i < 0 || i >= visited.length || j < 0 || j >= visited[0].length || threshold < isRange(i, j) || visited[i][j]){
            return 0;
        }
        //表示当前位置被访问
        visited[i][j] = true;
        //从当前位置的上左下右四个方位分别进行查找
        return 1 + dfs(i+1, j, threshold, visited) + dfs(i, j+1, threshold, visited);
    }
    //计算下标之和
    public int isRange(int i, int j){
        int sum = 0;
        while(i > 0){
            sum += i % 10;
            i /= 10;
        }
        while(j > 0){
            sum += j % 10;
            j /= 10;
        }
        return sum;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值