多模态多目标问题简介
本人的专栏多模多目标算法,更多内容可以前往查阅,如有错误,欢迎批评指正!
与多模态单目标优化相似,多目标优化中也会出现多模态情况。在多目标优化中,从决策空间到目标空间的映射并不总是一对一的映射。因此,PS在某些情况下并不是唯一的。也就是说,可能存在多个PSs映射到同一个PF,那么这类问题称为多模态多目标优化问题。
多模态多目标
在多目标问题中存在多个全局或局部帕累托最优解集的情况。
如果一个多目标优化问题满足以下两个条件之一,那么该问题被称之为多模态多目标优化问题:
-
该问题至少有一个局部帕累托最优解集;
-
该问题至少有两个等效全局帕累托最优解,它们对应PF上同一个点。
其中,局部帕累托最优解指不被任何邻域解支配的解;全局帕累托最优解指不被可行区域内任何解支配的解。
左侧是决策空间,右侧是目标空间,决策空间两条曲线 P S 1 PS_1 PS1 和 P S 2 PS_2 PS2 代表两个全局帕累托最优解集,它们映射到目标空间同一个全局帕累托前沿PF。决策空间的圆点 A 1 A_1 A1 和 A 2 A_2 A2 代表两个解集中的可行解,它们都映射到目标空间的圆点A。 虽然 A 1 A_1 A1 和 A 2 A_2 A2 在决策空间的距离较大,但是它们在目标空间的距离为零。 这是多模态多目标优化问题的一个特点也是求解的难点。
多模态多目标的意义
- 多个解集可以满足不同决策者的需求;
- 多个解集可以揭示问题的潜在特性;
- 快速由一个解集转化到另一个解集可以帮助解决动态优化问题;
- 提供多个解集可以提高找到鲁棒解的可能性;
更多内容可以前往郑州大学计算智能实验室