多模态多目标问题简介

本文介绍了多模态多目标优化问题,它涉及到决策空间与目标空间的多对一映射,导致多个帕累托最优解集。多模态多目标优化的特点在于存在多个全局或局部最优解,这有助于满足不同决策者需求,揭示问题潜在特性,并在动态优化中发挥作用。此外,解决此类问题能提高找到鲁棒解的可能性。
摘要由CSDN通过智能技术生成

多模态多目标问题简介

本人的专栏多模多目标算法,更多内容可以前往查阅,如有错误,欢迎批评指正!

与多模态单目标优化相似,多目标优化中也会出现多模态情况。在多目标优化中,从决策空间到目标空间的映射并不总是一对一的映射。因此,PS在某些情况下并不是唯一的。也就是说,可能存在多个PSs映射到同一个PF,那么这类问题称为多模态多目标优化问题。

多模态多目标

在多目标问题中存在多个全局或局部帕累托最优解集的情况。

如果一个多目标优化问题满足以下两个条件之一,那么该问题被称之为多模态多目标优化问题:

  • 该问题至少有一个局部帕累托最优解集;

  • 该问题至少有两个等效全局帕累托最优解,它们对应PF上同一个点。

    其中,局部帕累托最优解指不被任何邻域解支配的解;全局帕累托最优解指不被可行区域内任何解支配的解。

在这里插入图片描述

左侧是决策空间,右侧是目标空间,决策空间两条曲线 P S 1 PS_1 PS1 P S 2 PS_2 PS2 代表两个全局帕累托最优解集,它们映射到目标空间同一个全局帕累托前沿PF。决策空间的圆点 A 1 A_1 A1 A 2 A_2 A2 代表两个解集中的可行解,它们都映射到目标空间的圆点A。 虽然 A 1 A_1 A1 A 2 A_2 A2 在决策空间的距离较大,但是它们在目标空间的距离为零。 这是多模态多目标优化问题的一个特点也是求解的难点。

多模态多目标的意义

  • 多个解集可以满足不同决策者的需求;
  • 多个解集可以揭示问题的潜在特性;
  • 快速由一个解集转化到另一个解集可以帮助解决动态优化问题;
  • 提供多个解集可以提高找到鲁棒解的可能性;

更多内容可以前往郑州大学计算智能实验室

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值