from __future__ import print_function, division from keras.datasets import mnist from keras.layers import Input, Dense, Reshape, Flatten, Dropout from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam import os import cv2 # You may need to install OpenCV: pip install opencv-python import matplotlib.pyplot as plt import sys import numpy as np class DCGAN(): def __init__(self): # Input shape self.img_rows = 28 self.img_cols = 28 self.channels = 1 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.latent_dim = 100 optimizer = Adam(0.0002, 0.5) # Build and compile the discriminator self.discriminator = self.build_discriminator() self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # Build the generator self.generator = self.build_generator() # The generator takes noise as input and generates imgs z = Input(shape=(self.latent_dim,)) img = self.generator(z) # For the combined model we will only train the generator self.discriminator.trainable = False # The discriminator takes generated images as input and determines validity valid = self.discriminator(img) # The combined model (stacked generator and discriminator) # Trains the generator to fool the discriminator self.combined = Model(z, valid) self.combined.compile(loss='binary_crossentropy', optimizer=optimizer) def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=3, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img) def build_discriminator(self): model = Sequential() model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(64, kernel_size=3, strides=2, padding="same")) model.add(ZeroPadding2D(padding=((0,1),(0,1)))) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(256, kernel_size=3, strides=1, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity) def train(self, epochs, batch_size=128, save_interval=50): # 加载数据集 data_path = "E:/data/*******" X_train = [] for filename in os.listdir(data_path): img = cv2.imread(os.path.join(data_path, filename), cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (self.img_rows, self.img_cols)) img = img / 255.0 # 将像素值缩放到 [0, 1] X_train.append(img) X_train = np.array(X_train) X_train = np.expand_dims(X_train, axis=-1) # 添加通道维度 # Load the dataset # (X_train, _), (_, _) = mnist.load_data() # Rescale -1 to 1 # X_train = X_train / 127.5 - 1. # X_train = np.expand_dims(X_train, axis=3) # Adversarial ground truths valid = np.ones((batch_size, 1)) fake = np.zeros((batch_size, 1)) for epoch in range(epochs): # --------------------- # Train Discriminator # --------------------- # Select a random half of images idx = np.random.randint(0, X_train.shape[0], batch_size) imgs = X_train[idx] # Sample noise and generate a batch of new images noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) gen_imgs = self.generator.predict(noise) # Train the discriminator (real classified as ones and generated as zeros) d_loss_real = self.discriminator.train_on_batch(imgs, valid) d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------- # Train Generator # --------------------- # Train the generator (wants discriminator to mistake images as real) g_loss = self.combined.train_on_batch(noise, valid) # Plot the progress print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) # If at save interval => save generated image samples if epoch % save_interval == 0: self.save_imgs(epoch) def save_imgs(self, epoch): r, c = 5, 5 noise = np.random.normal(0, 1, (r * c, self.latent_dim)) gen_imgs = self.generator.predict(noise) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray') axs[i,j].axis('off') cnt += 1 fig.savefig("images/mnist_%d.png" % epoch) plt.close() if __name__ == '__main__': dcgan = DCGAN() dcgan.train(epochs=4000, batch_size=32, save_interval=50) # save_interval是跑多少次batch进行一次日志记录
DCGAN+自建数据集
于 2023-12-05 09:57:36 首次发布