自监督学习(八)Learning Representations for Automatic Colorization

Learning Representations for Automatic Colorization

Introduction

本文和上一篇博客中介绍的文章思路相似,也是研究图像的自动上色方法,同时,验证了其在自监督学习上的效果。比较有意思的是,这两篇文章都是发在了ECCV2016上,而且文章思路也有很多相似之处。论文主页地址
文章通过预测图像像素点颜色的直方图分布实现图像的自动上色,在部分或整张图像上色任务上均取得了当时最好的效果。文章的最后,作者探讨了其在自监督学习任务上的效果。

Method

和上一篇博客中介绍的论文类似,本文的主要工作主要体现了损失函数和策略上,对于神经网络本身的研究不多。作者使用的是全卷机神经网络,并且使用了skip-layer的方法,从不同的卷积层依次取出特征图,联合之后作为分类层的输入,这样可以使网络更加有效地学习到不同尺度的特征。网络和方法结构图如下所示:
在这里插入图片描述
作者在这篇文章中,使用了LAB和HSL两种颜色空间,输入的图像都是代表亮度的L波段,预测其他两个波段。对于不同的颜色空间,损失函数的设计和标签的选取策略有所不同。

Loss

本文使用的损失函数的基本形式如下所示:
损失函数
其中, y y y表示标签数据,经过某种量化,可以产生K维的向量,可以参考上一篇博客中介绍的软编码的方式,但是作者这里发现,直接用one-hot编码效果是最好的,也就是说损失函数和交叉熵是一样的形式。
作者在这里对于不同的颜色空间使用了不同的量化方式,对于LAB颜色空间,作者采用均匀采样分位点的方法确定标签。在博主看来,这本质上就是一种不均匀的量化,实际上不仅可以做到标签的量化,而且可以缓解类别不均衡的问题,因为从上一篇博客的介绍,我们知道ab波段颜色分布在以0为中心,向四周逐渐降低。另外,作者在这里还尝试了将ab联合采样和分开采样两种情况,对于联合采样K取32,对于分开采样,K取16x16,分开采样点的时候,上面介绍的损失函数会变为两项(对应两个波段)。而对于HSL空间,对于H和S波段,作者只使用了分开采样。

Inference

同样的,本文也需要研究得到预测直方图后,如何将其映射回原图的方法,这里作者提出了四种方法:

  1. 从直方图采样一个,但是这样容易造成颜色的跳变。
  2. 选取直方图中最大一个。问题是容易在某个区域出现突然的颜色变化
  3. 通过线性差值得到最终的颜色。对于LAB空间,这种方法最有效
  4. 对直方图中的颜色进行加权平均,求期望。对于HSL空间,这种方法最有效。

Experiments

作者首先对自动上色的效果进行了验证:
在这里插入图片描述
这部分比较直观,我们主要关注其在自监督任务上的效果,作者是将其用在了pascal VOC12的分割任务上,
在这里插入图片描述
提升还是蛮大的,比直接使用ImageNet训练的alexnet效果还要好。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值