第五章 回溯算法习题

文章介绍了如何使用回溯算法解决三个问题:1)宝石排列的多样性计数,2)罗密欧与朱丽叶的最少转弯路径,3)石油传输网络的增压器最优设置。通过递归和剪枝策略优化搜索过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、现有n种不同形状的宝石,每种n颗,共n*n颗。同一形状的n颗宝石分别具有n种不同的颜色c1,c2,…,cn中的一种颜色。欲将这n*n颗宝石排列成n行n列的一个方阵,使方阵中每一行和每一列的宝石都有n种不同的形状和n种不同颜色。是设计一个算法,计算出对于给定的n,有多少种不同的宝石排列方案。

解题思路:利用回溯法首先需要明确搜索顺序,在本题中按第一行第一列开始移动,每次向右移动一列,到每行的最后一列时,从下一行第一列重新移动。搜索中的剪枝条件是判断每一行每一列宝石形状/颜色是否相同,同时该位置是否有宝石,若不满足条件则跳过该位置继续搜索下一位置。最后注意递归后需恢复标记。

解题代码:

#include<iostream>
using namespace std;
const int N = 100;
int n, ans;
bool rowshape[N][N], colshape[N][N]; // 判断每一行、列是否有宝石形状相同
bool rowcolor[N][N], colcolor[N][N]; // 判断每一行、列是否有宝石颜色相同
bool st[N][N]; // 该位置是否有i形状j颜色的宝石

void dfs(int x, int y)
{
    if (y == n)
    {
        y = 0; 
        x++; //换到下一行开头
    }
    if (x == n)
    {
        ans++;
        return;
    }

    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            if (!st[i][j] && !rowshape[x][i] && !colshape[y][i] && !rowcolor[x][j] && !colcolor[y][j])
            {
                st[i][j] = true;
                rowshape[x][i] = colshape[y][i] = rowcolor[x][j] = colcolor[y][j] = true;
                dfs(x, y + 1);
                st[i][j] = false;//恢复标记
                rowshape[x][i] = colshape[y][i] = rowcolor[x][j] = colcolor[y][j] = false;
            }
        }
    }
}

int main()
{
    cin >> n;
    dfs(0, 0);
    cout << ans << endl;
    return 0;
}

2、罗密欧与朱丽叶身处一个m×n的迷宫中。每一个方格表示迷宫中的一个房间。这 m × n 个房间中有一些房间是封闭的,不允许任何人进入。在迷宫中任何位置均可沿 8 个方向进入未封闭的房间。罗密欧位于迷宫的(p,q)方格中,他必须找出一条通向朱丽叶所在的(r,s)方格的路。在抵达朱丽叶之前,他必须走遍所有未封闭的房间各一次,而且要使到达朱丽叶的转弯次数为最少。每改变一次前进方向算作转弯一次。请设计一个算法帮助罗密欧找出这样一条道路。

解题思路:

回溯算法搜索的主要思路如下:

  1. 在当前位置按照8个方向搜索;
  2. 如果当前位置可以到达(没有越界和被封闭),则标记为当前步数+1,并进入下一层搜索;
  3. 在下一层搜索中,如果当前方向与上一个方向不同,则将dirs(转弯次数)加1;
  4. 如果当前位置是终点,且转弯次数小于等于当前最优解,则更新最少转弯次数best,并记录不同的最少转弯道路数count,并保存该路径
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值