1、现有n种不同形状的宝石,每种n颗,共n*n颗。同一形状的n颗宝石分别具有n种不同的颜色c1,c2,…,cn中的一种颜色。欲将这n*n颗宝石排列成n行n列的一个方阵,使方阵中每一行和每一列的宝石都有n种不同的形状和n种不同颜色。是设计一个算法,计算出对于给定的n,有多少种不同的宝石排列方案。
解题思路:利用回溯法首先需要明确搜索顺序,在本题中按第一行第一列开始移动,每次向右移动一列,到每行的最后一列时,从下一行第一列重新移动。搜索中的剪枝条件是判断每一行每一列宝石形状/颜色是否相同,同时该位置是否有宝石,若不满足条件则跳过该位置继续搜索下一位置。最后注意递归后需恢复标记。
解题代码:
#include<iostream>
using namespace std;
const int N = 100;
int n, ans;
bool rowshape[N][N], colshape[N][N]; // 判断每一行、列是否有宝石形状相同
bool rowcolor[N][N], colcolor[N][N]; // 判断每一行、列是否有宝石颜色相同
bool st[N][N]; // 该位置是否有i形状j颜色的宝石
void dfs(int x, int y)
{
if (y == n)
{
y = 0;
x++; //换到下一行开头
}
if (x == n)
{
ans++;
return;
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (!st[i][j] && !rowshape[x][i] && !colshape[y][i] && !rowcolor[x][j] && !colcolor[y][j])
{
st[i][j] = true;
rowshape[x][i] = colshape[y][i] = rowcolor[x][j] = colcolor[y][j] = true;
dfs(x, y + 1);
st[i][j] = false;//恢复标记
rowshape[x][i] = colshape[y][i] = rowcolor[x][j] = colcolor[y][j] = false;
}
}
}
}
int main()
{
cin >> n;
dfs(0, 0);
cout << ans << endl;
return 0;
}
2、罗密欧与朱丽叶身处一个m×n的迷宫中。每一个方格表示迷宫中的一个房间。这 m × n 个房间中有一些房间是封闭的,不允许任何人进入。在迷宫中任何位置均可沿 8 个方向进入未封闭的房间。罗密欧位于迷宫的(p,q)方格中,他必须找出一条通向朱丽叶所在的(r,s)方格的路。在抵达朱丽叶之前,他必须走遍所有未封闭的房间各一次,而且要使到达朱丽叶的转弯次数为最少。每改变一次前进方向算作转弯一次。请设计一个算法帮助罗密欧找出这样一条道路。
解题思路:
回溯算法搜索的主要思路如下:
- 在当前位置按照8个方向搜索;
- 如果当前位置可以到达(没有越界和被封闭),则标记为当前步数+1,并进入下一层搜索;
- 在下一层搜索中,如果当前方向与上一个方向不同,则将dirs(转弯次数)加1;
- 如果当前位置是终点,且转弯次数小于等于当前最优解,则更新最少转弯次数best,并记录不同的最少转弯道路数count,并保存该路径