原理介绍:
图像的变位压缩存储格式将所给的像素点序列{p1,p2,…,pn},0≤pi≤255分割成m个连续段S1,S2,…,Sm。第i个像素段Si中(1≤i≤m),有l[i]个像素,且该段中每个像素都只用b[i]位表示。设 则第i个像素段Si为
。
设,则hi<=b[i]<=8。因此需要用3位表示b[i],如果限制1<=l[i]<=255,则需要用8位表示l[i]。因此,第i个像素段所需的存储空间为l[i]*b[i]+11位。按此格式存储像素序列{p1,p2,…,pn},需要
位的存储空间。'
问题描述:
图像压缩问题要求确定像素序列{p1,p2,…,pn}的最优分段,使得依此分段所需的存储空间最少。每个分段的长度不超过256位。
动态规划算法思路:
(1)最优子结构性质
设l[i],b[i],1<=i<=m是{p1,p1,……pn}的一个最优分段,则l[1],b[1]是{p1,……,pl[1]}的一个最优分段,且l[i],b[i],2<=i<=m是{pl[1]+1,……,pn}的一个最优分段。即图像压缩问题满足最优子结构性质。
(2)状态转移方程
设s[i],1<=i<=n是像素序列{p1,p1,……pi}的最优分段所需的存储位数,则s[i]为前i-k个的存储位数加上后k个的存储空间。由最优子结构性质可得:
其中,
算法复杂度分析:
由于算法compress中对k的循环次数不超这256,故对每一个确定的i,可在时间O(1)内完成的计算。因此整个算法所需的计算时间为O(n)。
算法代码:
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int inf=0x3f3f3f3f;
int f[N];
int A[N];
int l[N],b[N];
int maxbit(int x){//求某个数存储需要的bit位数
if(x==0) return 1;
int res=0;
while(x){
x/=2;
res++;
}
return res;
}
int get_maxbit(int l,int r){//求某一区间(区间最大值)需要的bit位数
int res=0;
for(int i=l;i<=r;i++) res=max(res,A[i]);
return maxbit(res);
}
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++) scanf("%d",&A[i]);
for(int i=1;i<=n;i++){
f[i]=f[i-1]+maxbit(A[i])+11;//假设A[i]单独构成一段,作为初始情况
b[i]=maxbit(A[i]);
l[i]=1;
for(int j=2;j<=min(i,256);j++){//从i-1到j+1遍历取min(f[i])
int bit_j=get_maxbit(i-j+1,i);
int t=f[i-j]+bit_j*j+11;
if(f[i]>t){
f[i]=t;
b[i]=bit_j;//记录该段需要的bit位
l[i]=j;//记录该段的长度
}
}
}
int t=n;
vector<int>v;
while(t){
v.push_back(l[t]);//将长度信息用vector存储
t=t-l[t];
}
reverse(v.begin(),v.end());//倒置
printf("最少需要:%dbit\n",f[n]);
for(int i=0,t=1;i<v.size();i++){//输出分段信息
for(int j=0;j<v[i];j++)
printf("%d ",A[t++]);
printf("长%d,每个像素需要%dbit\n",l[t-1],b[t-1]);
}
return 0;