动态规划 图像压缩

原理介绍:

图像的变位压缩存储格式将所给的像素点序列{p1,p2,…,pn},0≤pi≤255分割成m个连续段S1,S2,…,Sm。第i个像素段Si中(1≤i≤m),有l[i]个像素,且该段中每个像素都只用b[i]位表示。设 则第i个像素段Si为

,则hi<=b[i]<=8。因此需要用3位表示b[i],如果限制1<=l[i]<=255,则需要用8位表示l[i]。因此,第i个像素段所需的存储空间为l[i]*b[i]+11位。按此格式存储像素序列{p1,p2,…,pn},需要 位的存储空间。'

问题描述:

图像压缩问题要求确定像素序列{p1,p2,…,pn}的最优分段,使得依此分段所需的存储空间最少。每个分段的长度不超过256位。 

动态规划算法思路:

(1)最优子结构性质

    设l[i],b[i],1<=i<=m是{p1,p1,……pn}的一个最优分段,则l[1],b[1]是{p1,……,pl[1]}的一个最优分段,且l[i],b[i],2<=i<=m是{pl[1]+1,……,pn}的一个最优分段。即图像压缩问题满足最优子结构性质。

(2)状态转移方程

设s[i],1<=i<=n是像素序列{p1,p1,……pi}的最优分段所需的存储位数,则s[i]为前i-k个的存储位数加上后k个的存储空间。由最优子结构性质可得:

其中,

算法复杂度分析:

由于算法compress中对k的循环次数不超这256,故对每一个确定的i,可在时间O(1)内完成的计算。因此整个算法所需的计算时间为O(n)。

算法代码:

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
const int inf=0x3f3f3f3f;

int f[N];
int A[N];
int l[N],b[N];
int maxbit(int x){//求某个数存储需要的bit位数
    if(x==0) return 1;
    int res=0;
    while(x){
        x/=2;
        res++;
    }
    return res;
}
int get_maxbit(int l,int r){//求某一区间(区间最大值)需要的bit位数
    int res=0;
    for(int i=l;i<=r;i++) res=max(res,A[i]);
    
    return maxbit(res);
}

int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++) scanf("%d",&A[i]);
	
	for(int i=1;i<=n;i++){
	    f[i]=f[i-1]+maxbit(A[i])+11;//假设A[i]单独构成一段,作为初始情况
	    b[i]=maxbit(A[i]);
	    l[i]=1;
	    for(int j=2;j<=min(i,256);j++){//从i-1到j+1遍历取min(f[i])
	        int bit_j=get_maxbit(i-j+1,i);
	        int t=f[i-j]+bit_j*j+11;
	        if(f[i]>t){
	            f[i]=t;
	            b[i]=bit_j;//记录该段需要的bit位
	            l[i]=j;//记录该段的长度
	        }
	    }
	}
	int t=n;
	vector<int>v;
	while(t){
	       v.push_back(l[t]);//将长度信息用vector存储
	       t=t-l[t];
	}
	reverse(v.begin(),v.end());//倒置
	printf("最少需要:%dbit\n",f[n]);
    for(int i=0,t=1;i<v.size();i++){//输出分段信息
        for(int j=0;j<v[i];j++)
            printf("%d ",A[t++]);
        printf("长%d,每个像素需要%dbit\n",l[t-1],b[t-1]);
    }
    return 0;

      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值