train_test_split(X, y, test_size=0.33, random_state=42) 中random_state=42

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档



提示:以下是本篇文章正文内容,下面案例可供参考

一、train_test_split(X, y, test_size=0.33, random_state=42) 中random_state=42是什么?

在机器学习中,train_test_split 函数是一个非常常用的工具,它用于将数据集分割成训练集和测试集。这个函数来自于 scikit-learn 库,是数据预处理阶段的一个关键步骤。通过分割数据集,我们可以训练模型并评估其性能,而不会让模型在已经见过的数据上进行测试,从而避免过拟合的问题。

train_test_split(X, y, test_size=0.33, random_state=42) 这个函数调用的参数解释如下:

X:特征数据集,通常是一个二维数组或类似数组的结构(如 pandas DataFrame),其中每一行代表一个样本,每一列代表一个特征。
y:目标变量或标签,通常是一个一维数组,包含了与 X 中每个样本对应的标签或目标值。
test_size=0.33:这个参数指定了测试集应该占整个数据集的比例。在这个例子中,33% 的数据将被用作测试集,剩下的 67% 将被用作训练集。
random_state=42:这个参数是一个随机种子值,用于确保每次分割数据时都能得到相同的结果。在数据分割的过程中,为了打乱数据,需要用到随机数。random_state 参数就是用来控制这个随机过程的种子值。设置这个参数可以使得实验的结果可复现,即每次运行代码时,分割出来的训练集和测试集都是一样的。


总结

提示:这里对文章进行总结:
设置random_state=42这个参数可以使得实验的结果可复现,即每次运行代码时,分割出来的训练集和测试集都是一样的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值