XGBoost的参数介绍及调参

XGBoost参数解释

XGBoost的参数分为三大类:

  • 通用参数:根据需求宏观调控。
  • Booster参数:booster参数一般可以调控模型的效果和计算代价。我们所说的调参,很这是大程度上都是在调整booster参数。
  • 学习目标参数:控制训练目标的表现。我们对于问题的划分主要体现在学习目标参数上。比如我们要做分类还是回归,做二分类还是多分类,这都是目标参数所提供的。

一、通用参数

  • booster:我们有两种参数选择,gbtree和gblinear。gbtree是采用树的结构来运行数据,而gblinear是基于线性模型。
  • silent:静默模式,为1时模型运行不输出。
  • nthread: 使用线程数,一般我们设置成-1,使用所有线程。如果有需要,我们设置成多少就是用多少线程。

二、Booster参数

  • n_estimator: 也作num_boosting_rounds,这是生成的最大树的数目,也是最大的迭代次数。

  • learning_rate: 有时也叫作eta,系统默认值为0.3。学习率越大越快收敛,但是容易过拟合,索引我们一般设置为0.1.

  • gamma:系统默认为0,我们也常用0。
    在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。因为gamma值越大的时候,损失函数下降更多才可以分裂节点。所以树生成的时候更不容易分裂节点。范围: [0,∞]

  • subsample:系统默认为1。
    这个参数控制对于每棵树,随机采样的比例。减小这个参数的值,算法会更加保守,避免过拟合。设置得过小可能会导致欠拟合。 典型值:0.5-10.5代表平均采样,防止过拟合。范围:(0,1]注意不可取0

  • colsample_bytree:系统默认值为1。我们一般设置成0.8左右。

    用来控制每棵随机采样的列数的占比(类采样率)。 典型值:0.5-1.范围: (0,1]

  • colsample_bylevel:默认为1,我们也设置为1.

    这个就相比于前一个更加细致了,它指的是每棵树每次节点分裂的时候列采样的比例。

  • max_depth: 系统默认值为6

    我们常用3-10之间的数字。这个值为树的最大深度。这个值是用来控制过拟合的。max_depth越大,模型学习的更加具体。设置为0代表没有限制,范围: [0,∞]

  • max_delta_step:默认0,我们常用0.

    这个参数限制了每棵树权重改变的最大步长,如果这个参数的值为0,则意味着没有约束。如果他被赋予了某一个正值,则是这个算法更加保守。通常,这个参数我们不需要设置,但是当个类别的样本极不平衡的时候,这个参数对逻辑回归优化器是很有帮助的。

  • lambda:也称reg_lambda,默认值为0。权重的L1正则化项。可以减少过拟合。

  • alpha:也称reg_alpha默认为0。可以应用在高维度的情况下,使得算法更快。

  • scale_pos_weight:默认为1
    在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。通常可以将其设置为负样本的数目与正样本数目的比值

二、学习目标函数

objective [objective = reg:linear]

  • reg:linear– 线性回归
  • reg:logistic – 逻辑回归
  • binary:logistic – 二分类逻辑回归,输出为概率
  • binary:logitraw– 二分类逻辑回归,输出的结果为wTx
  • count:poisson – 计数问题的poisson回归,输出结果为poisson分布。在poisson回归中,max_delta_step的缺省值为0.7 (used to safeguard optimization)
  • multi:softmax – 设置 XGBoost 使用softmax目标函数做多分类,需要设置参数num_class类别个数
  • multi:softprob – 如同softmax,但是输出结果为ndata*nclass的向量,其中的值是每个数据分为每个类的概率

eval_metric [eval_metric=通过目标函数选择]

  • rmse: 均方根误差
  • mae: 平均绝对值误差
  • logloss: negative log-likelihood
  • error: 二分类错误率。其值通过错误分类数目与全部分类数目比值得到。对于预测,预测值大于0.5被认为是正类,其它归为负类。 error@t: 不同的划分阈值可以通过 ‘t’进行设置
  • merror: 多分类错误率,计算公式为 (wrong cases)/(all cases)
  • mlogloss: 多分类log损失
  • auc: 曲线下的面积

一般来说,我们都会使用xgboost.train(params, dtrain)函数来训练我们的模型。这里的params指的是booster参数。

三、XGBoost调参

import xgboost as xgb
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import GridSearchCV

train_x, valid_x, train_y, valid_y = train_test_split(x_train, y_train, test_size=0.333, random_state=0)   # 分训练集和验证集
# 这里不需要Dmatrix

parameters = {
              'max_depth': [5, 10, 15, 20, 25],# 树的最大深度
              'learning_rate': [0.01, 0.02, 0.05, 0.1, 0.15],# 学习率
              'n_estimators': [500, 1000, 2000, 3000, 5000],# 最大迭代次数
              'min_child_weight': [0, 2, 5, 10, 20],# 新分裂的节点样本权重停止分裂的最小阈值
              'max_delta_step': [0, 0.2, 0.6, 1, 2],# 叶子输出的最大步长
              'subsample': [0.6, 0.7, 0.8, 0.85, 0.95],# 样本采样率
              'colsample_bytree': [0.5, 0.6, 0.7, 0.8, 0.9],# 列采样率
              'reg_alpha': [0, 0.25, 0.5, 0.75, 1],# L2正则化
              'reg_lambda': [0.2, 0.4, 0.6, 0.8, 1],# L1正则化
              'scale_pos_weight': [0.2, 0.4, 0.6, 0.8, 1]# 样本不均衡时

}

xlf = xgb.XGBClassifier(max_depth=10,
            learning_rate=0.01,
            n_estimators=2000,
            silent=True,
            objective='binary:logistic',
            nthread=-1,
            gamma=0,
            min_child_weight=1,
            max_delta_step=0,
            subsample=0.85,
            colsample_bytree=0.7,
            colsample_bylevel=1,
            reg_alpha=0,
            reg_lambda=1,
            scale_pos_weight=1,
            seed=1440,
            missing=None)
            
# 有了gridsearch我们便不需要fit函数
gsearch = GridSearchCV(xlf, param_grid=parameters, scoring='accuracy', cv=3)
gsearch.fit(train_x, train_y)

print("Best score: %0.3f" % gsearch.best_score_)
print("Best parameters set:")
best_parameters = gsearch.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
    print("\t%s: %r" % (param_name, best_parameters[param_name]))


XGBoost是一种非常强大的机器学习算法,但是它的调参比较复杂。下面是XGBoost参数调参的步骤及代码: 1. 确定参数范围:首先需要确定每个超参数范围,可以根据经验或者网上资料来确定。常见的超参数包括learning_rate、max_depth、min_child_weight、subsample、colsample_bytree等。 ``` # 设置超参数范围 param_grid = { 'learning_rate': [0.01, 0.05, 0.1, 0.15, 0.2], 'max_depth': [3, 4, 5, 6, 7], 'min_child_weight': [1, 3, 5, 7], 'subsample': [0.6, 0.7, 0.8, 0.9], 'colsample_bytree': [0.6, 0.7, 0.8, 0.9], } ``` 2. 网格搜索:使用GridSearchCV函数进行网格搜索,该函数会遍历所有可能的超参数组合,并返回最优的超参数。 ``` from sklearn.model_selection import GridSearchCV # 定义XGBoost模型 xgb_model = xgb.XGBClassifier() # 进行网格搜索 grid_search = GridSearchCV(estimator=xgb_model, param_grid=param_grid, cv=5, n_jobs=-1) # 拟合训练数据 grid_search.fit(train_X, train_y) # 输出最优的超参数 print(grid_search.best_params_) ``` 3. 随机搜索:如果网格搜索的超参数范围比较大,那么计算量可能会很大,这时候可以使用随机搜索来减少计算量。随机搜索会在超参数范围内随机选择若干个超参数组合进行训练,并返回最优的超参数。 ``` from sklearn.model_selection import RandomizedSearchCV # 定义XGBoost模型 xgb_model = xgb.XGBClassifier() # 进行随机搜索 random_search = RandomizedSearchCV(estimator=xgb_model, param_distributions=param_grid, cv=5, n_jobs=-1, n_iter=20) # 拟合训练数据 random_search.fit(train_X, train_y) # 输出最优的超参数 print(random_search.best_params_) ``` 4. 调整学习率:学习率是XGBoost中非常重要的超参数,它控制每次迭代的步长。如果学习率过大,可能会导致算法无法收敛;如果学习率过小,可能会导致算法收敛速度过慢。因此,需要在确定好其他超参数后,再调整学习率。 ``` # 定义XGBoost模型 xgb_model = xgb.XGBClassifier(learning_rate=0.1, max_depth=5, min_child_weight=3, subsample=0.8, colsample_bytree=0.8) # 训练模型 xgb_model.fit(train_X, train_y, eval_metric='auc') # 调整学习率 learning_rates = [0.01, 0.05, 0.1, 0.15, 0.2] for learning_rate in learning_rates: xgb_model.set_params(learning_rate=learning_rate) xgb_model.fit(train_X, train_y, eval_metric='auc') print("Learning rate: ", learning_rate) print("Accuracy score (train): {0:.3f}".format(xgb_model.score(train_X, train_y))) print("Accuracy score (test): {0:.3f}".format(xgb_model.score(test_X, test_y))) ``` 以上就是XGBoost参数调参的步骤及代码。需要注意的是,调参是一个反复试错的过程,需要不断地尝试不同的超参数组合,并根据模型的表现来调整超参数
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OrangeCat橘猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值