多元线性回归模型
由于实际问题的复杂性,一个经济变量可能会同多个变量相联系。例如,消费者对某种商品的需求量不仅取决于该种商品价格的影响,而且可能受消费者的收入水平、其他代用商品的价格等因素的影响。因此,有必要将只要有一个解释变量的一元回归模型推广到有多个解释变量的情况。
第一节 多元线性回归模型及古典假定
一、多元线性回归模型
在计量经济学种,如果总体回归函数描述了一个被解释变量与多个解释变量之间的线性关系,由此而设定的总体回归函数就是多元线性回归模型。与一元线性回归模型类似,所谓多元线性回归模型是指对各个回归参数而言是线性的,而对于变量既可以是线性的,也可以不是线性的。
一般地,对于由n个单位构成的总体,包含被解释变量Y与k-1个被解释变量X2,X3,…,Xk的多元总体线性回归函数的形式为:
式中,Bj(j=1,2,…,k)为模型的参数;ui为随机扰动项;k-1为解释变量的个数。
多元线性回归与简单线性回归模型不同,简单线性回归模型中除一个解释变量以外,其他影响因素均被归入随机扰动项。多元线性回归模型把多个解释变量纳入模型,即将原归入随机扰动项的某些因素纳入模型,这对于计量分析有重要的意义。多元线性回归模型中有多个解释变量,可以同时估计和检验多个因素对被解释变量的影响,从而避免重要解释变量被遗漏而导致设定误差。
在有多个解释变量的模型中,由于多个解释变量会同时对被解释变量Y的变动发挥作用,如果要考察其中某个解释变量对Y的影响,就必须使其他解释变量保持不变。在多元线性回归模型中,回归系数Bj(j=1,2,…,k)表示的正是在控制其他解释变量不变的条件下,第j个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。多元线性回归模型中回归系数的偏回归系数性质,可以实现在某些控制变量不变的情况下,分析所关注的变量对被解释变量的真实影响。
在总体线性回归函数中,各个回归系数是未知的,只能利用样本观测值对之进行估计。如果将被解释变量的样本条件均值Yi估计表示为各个解释变量的线性函数,即得多元样本线性回归函数:
式中。Bj估计(j=1,2,…,k)是对总体回归参数Bj的估计。
与简单线性回归类似,多元回归,由样本估计的被解释变量样本条件均值Yi估计与实际观测值Yi之间通常也存在偏差,即剩余项或残差ei,所以多元样本线性回归函数也可表示为:Yi=Yi估计+ei
如果有n次样本观测值,则:
其中i(i=1,2,…,n)
多元线性回归分析要解决的主要问题,仍然是如何根据变量的样本观测值去估计回归模型中的各个参数,即要用样本回归函数去估计总体回归函数,并且对估计的参数及回归方程进行统计检验,最后利用回归模型进行预测和经济分析。
二、多元线性回归模型的矩阵形式
对被解释变量Y及多个解释变量作n次观测,所得的n组观测值(Yi,X2i,X3i,…,Xki)(i=1,2,…,n)的线性关系,实际可写成方程组的形式:
这样的方程组可表示成矩阵形式:
这里的X向量矩阵是由解释变量Xij的数据构成的矩阵,其中截距项可视为解释变量总是取值为1。X向量矩阵一般是由非随机变量构成的,有时也称为X的数据矩阵或设计矩阵。
这样,多元总体线性回归函数及样本线性回归函数的矩阵形式可表示为:
三、多元线性回归模型的古典假定
在多元回归分析中,为了使参数估计量具有良好的统计性质,便于对模型进行统计检验,也需要对模型及随机扰动项作一些假定。多元线性回归模型的基本假定条件如下:
1. 零均值假定
假定随机扰动项的期望或均值为零,即