空间面板回归模型(stata操作)

空间面板回归模型(stata操作)

一、莫兰检验

此检验主要检验所研究的变量(或被解释变量)是否存在空间依赖性。首先利用各省份地区的位置坐标使用stata构造空间权重矩阵(距离矩阵),然后导入stata中。

 spatwmat using "C:\Users\86198\Desktop\空间权重矩阵.dta",name(W)    //空间权重矩阵命名为W
 spatgsa var2 var3 var4 var5 var6 var7 var8 var9,weights(W) moran //这里var2-var9为9年被解释变量数据,进行检验 

还可画出莫兰分布图

spatwmat using "C:\Users\86198\Desktop\空间权重矩阵.dta", name(W) standardize   //导入空间权重矩阵,进行标准化
spatlsa var2,weight(W) moran graph(moran) symbol(id) id(var1)  //画出莫兰分布图,并加以标记(var1)省份名

结果如下:
在这里插入图片描述
通过P值可知,被解释变量在各8年中存在着空间依赖性,所以继续进行空间模型的构建。

二、LM检验

LM检验主要判断是否可以进一步进行空间面板建模。

xtset dmu year   //设置面板
use "C:\Users\86198\Desktop\空间权重矩阵.dta",name(W) standardize
spmat dta W var1-var30,norm(row) replace  //var1-var30为空间权重矩阵的变量名
drop var1-var30
set matsize 240  //30*8(30个省份,8年数据)
mat TMAT = I(8)  //括号中代表年数
mat Wxt=TMAT#W  //将30*30的截面矩阵与TMAT合并
svmat Wxt
save Wxt.dta,replace  //这里保存LM检验所需要的空间面板权重矩阵
//随后可以重新在原数据stata文件引用空间面板权重矩阵
spatwmat using "C:\Users\86198\Desktop\Wxt.dta",name(ww) standardize
reg lncei lnelecnum lnfina  //先回归,后检验 (reg cei elecnum fina finaelecnum gdp chanquan nengyuan tech)后面又修改的数据
spatdiag,weights(ww)

结果如下
在这里插入图片描述
在空间误差模型中,均拒绝原假设,而空间滞后模型中,只有稳健拉格朗日乘数检验未通过,这更进一步可进行空间面板回归建模。

三、Hausman检验

紧接着,为了进一步确定模型类型,判断模型是随机效应还是固定效应,进行LM检验。stata代码如下:

xsmle cei elecnum fina finaelecnum gdp chanquan nengyuan tech,wmat(W) model(sdm) hausman nolog  //被解释变量在前,解释变量在后

在这里插入图片描述
由于Prob>=chi2=0.0000,拒绝原假设,所以模型为固定效应。

随后进行LR检验,以SDM模型为基准,判断SDM能否退化为SLM/SEM;Wald检验,判断SDM能否退化未SLM/SEM。

xsmle cei elecnum fina finaelecnum gdp chanquan nengyuan tech,fe model(sdm) wmat(W) type(time) nolog noeffects
est store sdm_a
xsmle cei elecnum fina finaelecnum gdp chanquan nengyuan tech,fe model(sar) wmat(W) type(time) nolog noeffects
est store sar_a
xsmle cei elecnum fina finaelecnum gdp chanquan nengyuan tech,fe model(sem) emat(W) type(time) nolog noeffects
est store sem_a
lrtest sdm_a sar_a
lrtest sdm_a sem_a

结果如下
在这里插入图片描述
如果上述均拒绝原假设,则说明sdm模型不能退化,可使用sdm(即空间杜宾模型)进行建模。

四、建模

//sdm模型回归
///时间固定效应模型
xsmle cei elecnum fina finaelecnum gdp chanquan nengyuan tech,fe model(sdm) wmat(W) type(time) nolog noeffects
///个体固定效应模型
 xsmle  cei elecnum fina finaelecnum gdp chanquan nengyuan tech,fe model(sdm) wmat(W)  type(ind) nolog noeffects
///双固定效应模型
 xsmle  cei elecnum fina finaelecnum gdp chanquan nengyuan tech,fe model(sdm) wmat(W)  type(both) nolog noeffects
 //输出结果至word文件
outreg2 using "C:\Users\86198\Desktop\空间杜宾.doc",replace pvalue bdec(3) pdec(2)

具体选择哪个模型,根据自己所需进行选择,也可看哪个适合研究假设、方便解释而定。需要注意的是,模型求解可能不收敛(这样结果不可信),即出现convergence not achieved,需要使用from(,copy)进行调试,直至收敛为止。

五、效应分解

xsmle  cei elecnum fina finaelecnum gdp chanquan nengyuan tech,fe model(sdm) wmat(W) type(time) nolog effects  //效应分解

最后根据结果,对应的进行分析。

注:以上仅是这段时间自学结果,只是自己一些拙见分享,欢迎大家批评指正。

附件:省级(市)空间权重矩阵、变量下载
dta(Stata)格式:
285个城市邻接矩阵
285空间地理权重矩阵
285经济地理矩阵
excel格式:
285个地级市空间权重矩阵
操作的研究变量:
31个省份2011-2020数字经济、产业结构、经济发展水平等经济指标

<think>好的,我现在需要帮用户修改他们的基准回归代码,以加入空间相关性分析。首先,我要理解用户的需求。他们之前用了reghdfe来做基准回归,现在需要将空间双重差分模型(SDID)整合进去,特别是使用地理距离空间矩阵,并生成包含DID项和W*DID项的结果,同时保持城市聚类的标准误。 首先,我得确认用户原来的代码结构。他们逐步添加控制变量,存储结果,然后用esttab导出表格。现在需要修改这部分代码,以包含空间模型。不过,Stata中处理空间模型通常需要不同的命令,比如xsmle或者spregress,而reghdfe可能不支持空间项。所以可能需要分两部分:基准回归空间回归分开做,然后合并结果。 接下来,用户提到了式(1)和式(3),其中式(1)是基础DID,式(3)可能是动态效应或空间模型。需要确保代码中同时包含这两部分。原来的基准回归已经用了reghdfe,这可能对应式(1)。空间模型部分需要使用空间计量命令,比如xsmle,并包含DID和空间滞后的DID项(Wdid)。 用户还提到地理距离空间矩阵,需要先构建这个矩阵。可能需要使用spatwmat或其他相关命令生成空间权重矩阵W,并标准化。然后,在空间回归中引用这个矩阵。 另外,用户希望结果表格包含基准回归空间回归的结果,可能需要将两个模型的结果存储起来,然后用esttab合并输出。不过,由于基准回归空间回归可能使用不同的估计命令,直接合并可能会有问题,需要检查是否可行。 需要注意的地方:空间模型的命令可能与reghdfe不兼容,所以可能无法在同一个回归框架下运行。需要分开运行基准DID和空间DID,然后分别存储结果,最后合并到同一表格中。此外,空间模型需要预先安装相关包,比如xsmle,用户可能需要安装这些包。 最后,用户可能希望导出结果到RTF和Excel,需要调整esttab和export excel命令,确保包含所有需要的模型结果。同时,注意空间回归中的系数标签,比如Wdid,可能需要手动添加以便结果表更清晰。 总结步骤: 1. 基准DID模型保持原代码,对应式(1)。 2. 构建地理距离空间矩阵W。 3. 使用空间计量命令(如xsmle)运行空间DID模型,包含DID和Wdid项,对应式(3)。 4. 存储基准和空间模型的结果。 5. 合并结果到同一表格,调整格式和标签。 6. 导出到RTF和Excel。 需要检查xsmle是否支持聚类标准误,以及如何正确指定模型类型(如SDM)。可能还需要处理固定效应,确保与基准模型一致。最后,测试代码是否能够运行,并生成符合用户描述的结果。</think>以下是基于空间双重差分模型(SDID)的代码修改方案,整合地理距离矩阵与空间溢出效应分析: --- ### 一、基准回归部分(维持原结构) ```stata * 式(1)基础DID模型 reghdfe log_y treat, absorb(city_id year) cluster(city_id) est store table1a reghdfe log_y treat x22, absorb(year city_id) cluster(city_id) est store table1b reghdfe log_y treat x22 x8, absorb(year city_id) cluster(city_id) est store table1c reghdfe log_y treat x22 x8 x11, absorb(year city_id) cluster(city_id) est store table1d reghdfe log_y treat x22 x8 x15 x11, absorb(year city_id) cluster(city_id) est store table1e ``` --- ### 二、空间模型部分(新增) ```stata * 生成地理距离空间矩阵(需安装spatwmat) spatwmat using "city_coordinates.dta", name(W) band(0 100) standardize //假设城市坐标数据已标准化,限定相邻城市最大距离100km * 空间双重差分模型(式3) xsmle log_y treat W_treat x22 x8 x15 x11, wmat(W) model(sdm) /// type(ind) effects nolog cluster(city_id) robust /// durbin(treat) //关键设定:通过durbin()生成W*treat交互项 est store spatial_model * 效应分解 estat impact //显示直接效应和间接效应 ``` --- ### 三、结果联合输出 ```stata * 合并基准与空间模型结果 esttab table1* spatial_model using "table3.rtf", /// r2 obslast nogaps star(* 0.1 ** 0.05 *** 0.01) /// b(%6.3f) se(%6.3f) r2(%6.3f) compress replace /// mtitle("模型1" "模型2" "模型3" "模型4" "模型5" "空间SDID") /// order(treat W_treat) //突出显示核心解释变量 * 数据导出 export excel using "D:/spatial_data.xlsx", firstrow(variables) replace ``` --- ### 四、关键修改说明 1. **空间交互项生成**:通过`durbin(treat)`自动创建`W_treat`(即W×DID项) 2. **矩阵标准化**:`standardize`确保空间权重矩阵行标准化 3. **模型选择**:`model(sdm)`指定空间杜宾模型,同时包含解释变量及其空间滞后项 4. **效应识别**: - `treat`系数反映政策本地效应(直接效应) - `W_treat`系数反映空间溢出效应(间接效应) 5. **稳健性控制**:`robust`+`cluster(city_id)`双重稳健标准误 --- ### 五、注意事项 1. 需提前进行: - `ssc install xsmle, replace` 安装空间计量包 - 空间矩阵需要n×n矩阵文件(可通过`spatwmat`生成) 2. 建议添加: ```stata * 空间相关性检验 moransi log_y, weights(W) //检验被解释变量的空间自相关 ``` 3. 若需要动态空间效应,可添加`lag(1)`选项构建时空模型 修改后的代码框架同时保留了传统DID结果(表1系列)和空间模型结果(表3),满足原文方法论要求。建议通过`estat impact`命令进一步分解空间效应。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小高要坚强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值