bilicav法求解高阶次勒让德函数

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


低阶的勒让德可以直接递推,而高阶的勒让德函数求解则不那么简单。

提示:以下是本篇文章正文内容,下面案例可供参考

一、说明

直接附代码

二、使用步骤

1.引入库

代码如下(示例):

###############################3.输入变量 ###############################
lenda=radians(float(input("请输入")))#输入精度
fi=float(input())#输入纬度

###############################4.计算勒让德和其导数###############################
n = 2161#阶数
tht = 90 - fi
tht = radians(tht)
p = zeros((n, n))
u = sin(tht)
t = cos(tht)
N = zeros((n, n))

N[ 0, 0 ] = 1
N[ 1, 0 ] = 1
N[ 1, 1 ] = 1
for i in range(2, n):
    for j in range(i + 1):
        if j >= 0 and j < i:
            N[ i, j ] = sqrt(1 - j ** 2 / i ** 2) * N[ i - 1, j ]
        else:
            N[ i, j ] = sqrt(1 - 1 / (2 * i)) * N[ i - 1, j - 1 ]



p[ 0, 0 ] = 1
for i in range(1, n):
    for j in range(i + 1):
        if j == 0:
            p[ i, j ] = t * p[ i - 1, j ] - 0.5 * u * p[ i - 1, j + 1 ]
        elif j > 0 and j != i:
            p[ i, j ] = t * p[ i - 1, j ] - u * (0.25 * p[ i - 1, j + 1 ] - p[ i - 1, j - 1 ])
        elif j == i:
            p[ i, j ] = t * p[ i - 1, j ] - u * (0 - p[ i - 1, j - 1 ])
for i in range(n):
    for j in range(i + 1):
        p[ i, j ] = sqrt(2 * i + 1) * N[ i, j ] * p[ i, j ]
# 总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了我的做法的使用,而想了解原理可以去看冯进凯大佬的论文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值