梯度消失和梯度爆炸是深度学习中的两个常见问题,尤其是在训练深层神经网络时。它们都与网络权重的梯度有关,这些梯度是通过反向传播算法计算出来的,用于网络权重的更新。下面是对这两个现象的详细解释:
梯度消失 (Vanishing Gradient)
定义: 当梯度消失发生时,它指的是在深层网络中,梯度的值变得非常小,接近于零。这种现象通常发生在网络的较低层(靠近输入层的部分)。由于梯度非常小,权重的更新非常缓慢或几乎没有更新,这使得网络很难学习,尤其是难以学习到更深层次的抽象表示。
梯度更新公式:
w
i
j
n
e
w
=
w
i
j
o
l
d
−
η
⋅
δ
j
k
w_{ij}^{new} = w_{ij}^{old} - \eta \cdot \delta_j^k
wijnew=wijold−η⋅δjk
梯度公式:
δ
j
k
=
f
′
(
n
e
t
j
k
)
∑
l
(
w
j
l
k
+
1
δ
l
k
+
1
)
\delta_j^k = f'(net_j^k) \sum_{l}( w_{jl}^{k+1} \delta_l^{k+1} )
δjk=f′(netjk)∑l(wjlk+1δlk+1)
向后传递的过程中由于系数小于1,因此可能产生逐步减小的梯度,逐渐造成梯度消失。
原因:
使用了不恰当的激活函数,如Sigmoid或Tanh,它们在输入值稍微大一点时就饱和,导致导数非常小。
网络架构问题,如过深的网络,会导致多层的连乘效应,使得梯度指数级减小。
梯度爆炸 (Exploding Gradient)
定义: 梯度爆炸与梯度消失相反,是指在训练过程中,梯度的大小急剧增加,变得非常大,以至于更新后的权重会变得非常大,导致网络模型无法收敛,学习失败。
原因:
网络层过多,梯度通过多层反向传播时累乘效应导致梯度急剧增大。
高学习率,使得梯度更新过于激烈。
不适当的权重初始化,特别是初始化权重过大。
应对策略
改进激活函数: 使用ReLU及其变种,如Leaky ReLU或ELU,它们不会在正区间饱和,可以缓解梯度消失问题。
权重初始化技巧: 如He初始化或Xavier初始化,这些方法可以帮助在训练开始时保持梯度在适当的范围内。
批量归一化(Batch Normalization): 通过对每一层的输入进行归一化,可以保持激活分布的稳定,减少梯度消失和爆炸问题。
使用残差连接(Residual Connections): 在网络中添加直接的前向连接,例如在ResNet架构中使用,可以帮助梯度直接流过一些层,缓解梯度消失问题。
梯度裁剪(Gradient Clipping): 对梯度大小进行限制,确保它们不会变得过大,以避免梯度爆炸。