数组区间求和
给定a1……an一共N个整数,有M次查询,每次需要查询区间【L,R】的和。
题目描述
第一行包含两个数:N,M
第二行输入N个整数
接下来的M行,每行有两个整数,L R,中间用空格隔开,数据保证L<=R
1<=N,M<=1e5,-1e5<=ai<=1e5
输出共M行,即每次查询的区间和
示例
输入:
5 3
1 2 3 4 5
1 3
3 3
4 5
输出:
6
3
9
题目分析
这个要考虑的是时间复杂度,我开始用的是双重循环,查询一次循环一次,然后循环套循环,时间复杂度是n(N*M).当数多的时候就会超时,所以用前缀和的方法来减少时间复杂度
前缀和
//先将前缀和初始化
int a[100000];
for(int i=1;i<=N;i++)//i=1是为了按照查询方便来的
a[i]+=a[i-1];
之后数组就变成了这个样子
a[1]=a[1];
a[2]=a[1]+a[2];
a[3]=a[1]+a[2]+a[3];
…
这样我们要查询一个区间和就只需要用数组去减就行了这样时间复杂度就变成n(N+M);
ok上代码
代码实现
#include<stdio.h>
int main()
{
int N,M,L,R,sum=0,a[100000];
scanf("%d%d",&N,&M);
for(int i=1;i<=N;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=N;i++)
a[i]+=a[i-1];
for(int j=0;j<M;j++)
{
scanf("%d%d",&L,&R);
printf("%d\n",a[R]-a[L-1]);
}
return 0;
}