torch.optim.lr_scheduler.OneCycleLR

这段代码展示了如何在PyTorch中使用OneCycleLR学习率调度器。它导入必要的库,定义了一个线性模型,设置SGD优化器和一周期学习率调度器,然后在循环中更新模型参数并记录学习率变化。最后,通过matplotlib绘制学习率的变化曲线。

1.引入库

代码如下(示例):

import matplotlib.pyplot as plt
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

2.读入数据

代码如下(示例):

import matplotlib.pyplot as plt
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
model = torch.nn.Linear(2, 1)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.1, steps_per_epoch=2, epochs=10)
lrs = []


for i in range(20):
    optimizer.step()
    lrs.append(optimizer.param_groups[0]["lr"])
#     print("Factor = ",i," , Learning Rate = ",optimizer.param_groups[0]["lr"])
    scheduler.step()

plt.plot(lrs)
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笔下万码生谋略

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值