从item()方法中我们可以看出,item()是将一个张量的值,以一个python数字形式返回,但该方法只能包含一个元素的张量,对于包含多个元素的张量,可以考虑tolist()方法。
该操作是不能微分的;即不可求导,不能调用backward()方法进行反向传播。
例子如下:
a = torch.Tensor([1.0])
print(type(a))
b = a.item()
print(type(b))
输出:
<class 'torch.Tensor'>
<class 'float'>
多个张量元素转换方法 tolist():
c = torch.Tensor([1.0, 2.0,3.0])
print(type(c))
d = c.tolist()
print('d', d, type(d))
输出:
<class 'torch.Tensor'>
d [1.0, 2.0, 3.0] <class 'list'>
# 错误示范,对多个张量元素使用item()方法
c = torch.Tensor([1.0, 2.0,3.0])
e = c.item()
报错:
Traceback (most recent call last):
File "E:/lmy/document/lmy/pycharm/regression/main.py", line 34, in <module>
e = c.item()
ValueError: only one element tensors can be converted to Python scalars