tensor.item()、tensor.tolist()方法使用举例

从item()方法中我们可以看出,item()是将一个张量的值,以一个python数字形式返回,但该方法只能包含一个元素的张量,对于包含多个元素的张量,可以考虑tolist()方法。

该操作是不能微分的;即不可求导,不能调用backward()方法进行反向传播。

例子如下:

a = torch.Tensor([1.0])
print(type(a))
b = a.item()
print(type(b))

输出:
<class 'torch.Tensor'>
<class 'float'>

 多个张量元素转换方法 tolist():

c = torch.Tensor([1.0, 2.0,3.0])
print(type(c))
d = c.tolist()
print('d', d, type(d))

输出:
<class 'torch.Tensor'>
d [1.0, 2.0, 3.0] <class 'list'>


# 错误示范,对多个张量元素使用item()方法
c = torch.Tensor([1.0, 2.0,3.0])
e = c.item()

报错:
Traceback (most recent call last):
  File "E:/lmy/document/lmy/pycharm/regression/main.py", line 34, in <module>
    e = c.item()
ValueError: only one element tensors can be converted to Python scalars

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值