数据结构 一、时间复杂度与空间复杂度

今天是2020年4月29日,从今天开始学习数据结构,写博客的目的一是为了巩固与分享今天课堂上所学习的知识,二是可以督促自己希望自己可以坚持下去。如果哪个地方我说错了,评论请轻点喷(博主是小白,第一次接触数据结构,希望可以和大家一起努力共同进步)

正文开始

 

目录

目录

数据结构

1、什么是数据结构?

2、什么是算法?

3、衡量一个算法是否良好的因素?

4、时间复杂度

4.1时间复杂度的概念

4.2大O的渐进表示法

4.3常见时间复杂度计算举例

 5、空间复杂度

5.1空间复杂度是什么?

5.2实例



数据结构

1、什么是数据结构?

数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。


2、什么是算法?

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

 

3、衡量一个算法是否良好的因素?

第一种是时间效率第二种是空间效率时间效率被称为时间复杂度而空间效率被称作空间复杂度时间复杂度主要衡量的是一个算法的运行速度而空间复杂度主要衡量一个算法所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

 

4、时间复杂度

4.1时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

4.2大O的渐进表示法

// 请计算一下Func1基本操作执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
    for (int j = 0; j < N ; ++ j)
    {
    ++count;
    }
}
for (int k = 0; k < 2 * N ; ++ k)
{
    ++count;
}
}
int M = 10;
while (M--)
{
    ++count;
}
printf("%d\n", count);
}

 Func1执行的基本操作次数是:

F(N)=N^{2}+2*N+10

若:N = 10 F(N) = 130

N = 100 F(N) = 10210

N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。
大O符号(Big O notation):是用于描述函数渐进行为的数学符号

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。使用大O的渐进表示法以后,Func1的时间复杂度为:

O(N^{2})

若:N = 10 F(N) = 100

N = 100 F(N) = 10000

N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)


4.3常见时间复杂度计算举例

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
    ++count;
}
int M = 10;
while (M--)
{
    ++count;
}
printf("%d\n", count);
}

结果:O(N)

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
    ++count;
}
for (int k = 0; k < N ; ++ k)
{
    ++count;
}
printf("%d\n", count);
}

结果:O(N+M) 

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
    ++count;
}
printf("%d\n", count);
}

结果:O(1)

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

strchr函数功能为在一个串中查找给定字符的第一个匹配之处。函数原型为:char *strchr(const char *str, int c),即在参数 str 所指向的字符串中搜索第一次出现字符 c(一个无符号字符)的位置。strchr函数包含在C 标准库 <string.h>中。

若给定字符为str中第一个字符,则最好的结果执行1次,若为最后一个,则最坏N次,时间复杂度一般看最坏,则结果为O(N).

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
    int exchange = 0;
    for (size_t i = 1; i < end; ++i)
    {
        if (a[i-1] > a[i])
        {
            Swap(&a[i-1], &a[i]);
            exchange = 1;
        }
    }
    if (exchange == 0)
        break;
} 
}

外层循环控制趟数,内层循环进行比较,将相邻两元素不断比较交换。

其基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
 

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
while (begin < end)
{
    int mid = begin + ((end-begin)>>1);
    if (a[mid] < x)
        begin = mid+1;
    else if (a[mid] > x)
        end = mid;
    else
        return mid;
}
return -1;
}

 尽量不要使用:

int mid = (begin+end)/ 2;

而使用这句,不是说上面有错,而是在begin和end都非常大的时候容易发生数据溢出。 

  int mid = begin + ((end-begin)>>1);

 这句相当于循环右移,原因如图所示:

可以通过根据二分法画图来计算其时间复杂度,如下:

即基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。

实例7

// 计算阶乘递归Factorial的时间复杂度?
long long Factorial(size_t N)
{
    return N < 2 ? N : Factorial(N-1)*N;
}

这块阶乘表示的不是很严谨 ,当看不出来的时候,画图:

递归函数时间复杂度:单次递归次数*总的递归次数

                                          (常数)     (N+1)

所以时间复杂度为:O(N)

实例8:

// 计算斐波那契递归Fibonacci的时间复杂度?
long long Fibonacci(size_t N)
{
    return N < 2 ? N : Fibonacci(N-1)+Fibonacci(N-2);
}

 示意图如下:

 通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。(建议画图递归栈帧的二叉树讲解)。不懂就画图---真理

那么问题来了,你能把斐波那契数列的时间复杂度优化到O(N)吗?

unsigned long long Fib1(int n)
{
	long long first = 1;
	long long second = 1;
	long long ret = 1;
	for (int i = 3; i <= n; ++i)
	{
	    ret = first + second;
		first = second;
		second = ret;
	}
	return ret;
}

 5、空间复杂度

5.1空间复杂度是什么?

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

空间复杂度:函数中所需要空间的个数关于N的数学表达式

5.2实例

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

. 实例1使用了常数个额外空间,所以空间复杂度为 O(1)
实例2:

// 计算Fibonacci的空间复杂度?
long long* Fibonacci(size_t n)
{
    if(n==0)
        return NULL;
    long long * fibArray =(long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;for (int i = 2; i <= n ; ++i)
    {
        fibArray[i ] = fibArray[ i - 1] + fibArray [i - 2];
    }
    return fibArray ;
}

实例2动态开辟了N个空间,空间复杂度为 O(N)

 


 

 

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

I am Supreme

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值