一、作品详细简介
1.1附件文件夹程序代码截图
全部完整源代码,请在个人首页置顶文章查看:
学行库小秘_CSDN博客编辑https://blog.csdn.net/weixin_47760707?spm=1000.2115.3001.5343
1.2代码文件说明
1.2.1 main.m主函数文件
代码的主要功能是读取数据集,进行数据处理和降维,并最终对数据进行可视化。下面是对每部分代码的解释:
1. 读取数据
- 使用 xlsread 函数从 Excel 文件 '数据集.xlsx' 中读取数据,并将其存储在 res 变量中。
2. 参数设置
- Tag 设置为 1,表示数据集中包含标签。
- M 获取数据集中的样本数,使用 size 函数得到 res 的行数,即样本的数量。
3. 划分特征与标签
- 根据 Tag 值决定是否有标签:
- 如果 Tag == 1,则从数据集中划分特征和标签:P_train 包含除最后一列以外的所有列(输入特征),T_train 是最后一列(标签)。
- 如果 Tag == 0,表示数据没有标签,所有数据作为特征,标签用全1向量代替。
4. 数据归一化
- 使用 mapminmax 函数将输入特征 P_train 进行归一化处理,将数据缩放到 [0, 1] 范围内,得到归一化后的 p_train。
5. 矩阵转置
- 将归一化后的特征数据p_train转置,准备下一步的降维处理。
6. 降维
- 设置降维维度 k = 4。
- 使用 t-SNE(t-Distributed Stochastic Neighbor Embedding)算法对 p_train 数据进行降维,降到 k 个维度,结果存储在 zes 中。
7. 绘制可视化结果
- 使用 gscatter 函数将降维后的前两个维度(zes(:, 1) 和 zes(:, 2))进行散点图可视化,并根据 T_train 标签对数据进行分类着色。
- 设置 x 轴和 y 轴标签,以及图表的标题。
- 使用 grid 函数显示网格线。
总结
此代码首先从 Excel 文件中读取数据,划分特征与标签,并进行归一化处理。随后使用 t-SNE 算法将高维数据降至 4 维(前两维用于可视化),最后根据标签绘制降维后的二维数据的可视化结果。
图2 main.m主函数文件部分代码
1.2.4 数据集文件
数据集为Excel数据csv格式或.xlsx格式文件,可以方便地直接替换为自己的数据运行程序。原始数据文件包含12列特征列数据和1列输出标签列数据,一共包含357条样本数据,具体如图所示。
二、代码运行结果展示
该基于t分布邻域嵌入算法(T-SNE)的分类数据降维可视化模型代码首先从 Excel 文件中读取数据,划分特征和标签,并对特征数据进行归一化处理。然后使用 t-SNE 算法将高维特征降维至指定维数4维,并通过二维散点图对前两维进行可视化,展示降维后的数据分布,依据标签进行分类着色,最终生成数据特征的可视化结果。
三、注意事项:
1.程序运行软件推荐Matlab 2018B版本及以上;
2.所有程序都经过验证,保证程序可以运行。此外程序包含简要注释,便于理解。
3.代码包含详细的文件说明,以及对每个程序文件的功能注释,说明详细清楚。
4.Excel数据,可直接修改数据,替换数据后直接运行即可。
5.如果不会运行,可以帮忙远程运行原始程序以及讲解和其它售后。