RAGFLOW使用笔记【更新ing】

0.引言

本文记录使用RAGFLOW的一些问题以及解决办法,它以笔记的形式存在,方便我以后回顾自己的学习工作。

1.RAGFLOW上传文件大小默认是128M,如何修改上传文件大小?

更新ragflow/docker/.env中的MAX_CONTENT_LENGTH 环境变量

图片引导

然后同步更新 /ragflow/docker/nginx/nginx.conf中的client_max_body_size 大小

引导截图

重启所有相关容器生效

docker compose down
docker compose -f docker-compose.yml up -d

现在应该能够上传大小小于 700MB 的文件。

2.镜像源参考

2025年2月26日晚上可用镜像源【好用】

https://docker.1ms.run

——————————————————————
更换docker镜像源方式如下(Linux服务器为例,windows可视化docker环境比较简单):
(1)打开/etc/docker/daemon.json文件
修改为如下:

{
    "registry-mirrors": [
        "https://docker.1ms.run"
    ]
}

(2)重启docker生效

sudo systemctl daemon-reload
sudo systemctl restart docker
sudo systemctl status docker

——————————————————————

3.将默认数据库Elasticsearch更换为infinity

(1)停止所有正在运行的容器

docker compose -f docker-compose.yml down -v

注意:-v将删除 Docker 容器卷,并清除现有数据
停止所有容器

(2)在文件ragflow/docker/.env中设置DOC_ENGINEinfinity
更改后的
(3)重新启动容器

docker compose -f docker-compose.yml up -d

成功效果图
成功效果图
————————————
NOTES:
1.更改为infinity数据库后文件需要重新解析才能正常使用聊天+检索功能!
2.尚不正式支持在 Linux/arm64 计算机上切换到 Infinity。
————————————
(4)检查ragflow-server服务器状态
——————————————————————
报错:
WARNING 571 (2003, “Index: 29 isn’t supported, you are using a deprecated version of Python SDK. Please install the corresponding version Python SDK.”). Waiting Infinity IP: infinity, Port: 23817 to be healthy.
解决办法:
——————————————————————————

4.更新RAGFLOW版本的步骤

(1)更新 ragflow/docker/.env

#进入docker文件夹
cd ragflow/docker
#查看全部文件
ls -a

——————————————————————————————————————
注意:ragflow/docker文件夹中 .env文件属性是隐藏的,想要看见它必须用命令ls -a
——————————————————————————————————————
在这里插入图片描述

修改如下内容:

RAGFLOW_IMAGE=infiniflow/ragflow:【v0.16.0】

——————————————————————————————
根据自己更新的版本修改【】里面内容
也可以直接更新到最新版本:RAGFLOW_IMAGE=infiniflow/ragflow:latest
——————————————————————————————
修改成功如下图所示
在这里插入图片描述

(2)更新 RAGFlow 映像并重新启动 RAGFlow

docker compose -f docker-compose.yml pull
docker compose -f docker-compose.yml up -d

更新镜像截图
(3)启动ragflow-server服务器

docker logs -f ragflow-server

启动成功如下图所示
启动成功

到此,ragflow更新成功!

5.远程访问服务器上的RAGFLOW

(1)在 Web 浏览器中,输入服务器的 IP 地址并登录 RAGFlow

http://IP_OF_YOUR_MACHINE:80

例如:123.197.47.66:80
默认的就是80端口,直接输入IP地址就会弹出RAGFLOW登录界面

如下图所示
登录截图
(2)输入账号、密码登录成功
成功截图

### 安装和配置RAGFlow于ARM架构 #### 准备工作环境 为了在ARM架构上成功部署RAGFlow,首先需要确保操作系统已正确安装并更新至最新状态。对于Ubuntu系统而言,在执行任何操作之前应当先卸载旧版Docker组件以防止冲突发生[^2]。 ```bash sudo apt-get remove docker docker-engine docker.io containerd runc ``` 接着,添加官方GPG密钥以及稳定版仓库: ```bash curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg echo \ "deb [arch=arm64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null ``` 上述命令特别指定了`arch=arm64`参数来匹配目标硬件平台的要求[^3]。 #### 安装Docker Engine 完成准备工作之后就可以正式开始安装Docker引擎了。通过下面这条简单的APT包管理器指令即可轻松搞定: ```bash sudo apt-get update && sudo apt-get install -y docker-ce docker-ce-cli containerd.io ``` 此时应该已经可以在ARM设备上面运行基本的容器化应用了;但是为了让后续能够顺利创建多平台兼容性的镜像文件还需要额外启用实验性质的功能——BuildX插件。 编辑位于`/etc/docker/daemon.json`路径下的守护进程配置文件并向其中加入如下所示的内容片段以便激活Experimental特性开关: ```json { "experimental": true, "features": {"buildkit":true} } ``` 重启服务使更改生效: ```bash sudo systemctl restart docker ``` #### 获取并启动RAGFlow 现在转向获取RAGFlow本身。由于该项目托管在一个特定平台上,因此可以直接克隆整个Git库到本地环境中去: ```bash git clone https://gitcode.com/gh_mirrors/ra/ragflow.git cd ragflow/ ``` 按照官方给出说明文档中的指示逐步完成剩余部分的操作流程,比如可能涉及到调整某些预设参数或是编写自定义脚本等等。通常情况下会有一个README.md或者其他形式的帮助指南可供查阅具体细节[^1]。 最后利用刚才提到过的BuildKit工具链来进行跨平台编译处理从而得到适配当前处理器类型的可执行二进制文件或者是OCI格式的标准映像档案。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值