2016-2017 ACM-ICPC CHINA-Final - H.Great Cells【思维】

题面

题意: 一个矩阵中的一个格子如果满足它严格大于它所在的行和列,那么我们称这个格子为great cell A g A_{g} Ag代表有g个 great cell 时的方案数。给出一个n行m列的矩阵和一个数k,k表示每个格子可以从 [ 1 , k ] \left [1 ,k\right ] [1,k]中选取一个数放进当前格子。要我们计算这个公式的结果 ∑ g = 0 N M ( g + 1 ) ⋅ A g m o d ( 1 0 9 + 7 ) \sum_{g=0}^{NM} (g + 1) · A_g mod (10^9 + 7) g=0NM(g+1)Agmod(109+7)

题解: 刚开始被这个公式陷进去了,一直在想 A g A_g Ag如何计数,后来发现完全数不过来,赛后看了dalao的博客,才发现一开始就像错了,我的思维太局限了。上面那个公式可以拆分成 ∑ g = 0 N M g ⋅ A g m o d ( 1 0 9 + 7 ) + ∑ g = 0 N M A g m o d ( 1 0 9 + 10 ) \sum_{g=0}^{NM} g · A_g mod (10^9 + 7) + \sum_{g=0}^{NM} A_g mod(10^9 + 10) g=0NMgAgmod(109+7)+g=0NMAgmod(109+10)
后面那个公式代表所有的 A g A_g Ag矩阵数量,其实也就是所有矩阵的数量,所以后面那个公式就是 K N M K^{NM} KNM
对于前面的公式, A g A_{g} Ag代表有g个 great cell 时的方案数,g代表当前的 great cell 的个数, 所以对于当前这种方案 A g A_g Ag,我如果给它乘上一个g,那么代表每个 great cell 都分到了1,也就是当前这种方案下的g个格子对答案的贡献都为1。所以 ∑ g = 0 N M g ⋅ A g m o d ( 1 0 9 + 7 ) \sum_{g=0}^{NM} g · A_g mod (10^9 + 7) g=0NMgAgmod(109+7)对于这个公式就是所有格子作为great cell的情况总和。
所以可以转化一下求法,从矩阵中选取一个格子,计算这个格子作为great cell的总数,只需要保证这行这列严格小于当前格子就行,所有受限制的格子有 N − 1 + M − 1 N - 1 + M - 1 N1+M1个,其余的 ( N − 1 ) ∗ ( M − 1 ) (N-1)*(M-1) (N1)(M1)个格子是不受限制的,所以我们就能把题目给的公式化简为下列公式 N M ∑ i = 1 K ( i − 1 ) N + M − 2 ∗ K ( N − 1 ) ∗ ( M − 1 ) + K N M NM\sum_{i = 1}^{K} (i - 1)^{N + M - 2} * K^{(N - 1) * (M - 1)} + K^{NM} NMi=1K(i1)N+M2K(N1)(M1)+KNM

#include<bits/stdc++.h>
using namespace std;    
#define ll long long
const int maxn = 110;
const int mod = 1e9 + 7;
int quick_power(ll n, ll k){
	int ans=1;
	while(k){
		if(k&1){
			ans=(ans*n)%mod;
		}
		n=n*n%mod;
		k>>=1;
	}
	return ans%mod;
}
int t;
ll n, m, k;
int main() {
	scanf("%d", &t);
    for(int case1 = 1; case1 <= t; case1++){
        scanf("%lld %lld %lld", &n, &m, &k);
        if(n == 1 && m == 1){
            printf("Case #%d: %lld\n", case1, k);
            continue;
        }
        ll ans = quick_power(k, n * m);
        ll cnt = 0;
        for(int i = 1; i <= k; i++){
            cnt = (cnt + quick_power(i - 1, n + m - 2)) % mod;
        }
        cnt = cnt * n % mod * m % mod * quick_power(k, (n - 1) * (m - 1)) % mod;
        ans = (ans + cnt) % mod;
 
        printf("Case #%d: %lld\n", case1, ans);
    }
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值