第三周:使用PyTorch实现天气识别

一、本周学习内容

1、本地读取并加载数据
2、测试集accuracy到达93%

二、前言

本次使用pytorch实现对天气的识别,标签分为四类:‘cloudy’,‘rain’,‘shine’,‘sunrise’。数据集下载地址:链接: link(提取码:hqij )。

三、电脑环境

电脑系统:macOS Monterey 12.7.4
语言环境:Python 3.8.0
编译器:Jupyter Notebook
深度学习环境:torch:2.2.1 torchvision:0.17.1

四、前期准备

1、导入相关依赖项,设置CPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2、导入数据并显示

data_dir = './data/' # 获取数据集路径
data_dir = pathlib.Path(data_dir) # 将文件夹的路径转换为pathlib.Path对象
data_paths = list(data_dir.glob('*')) # 获取data_dir路径下所有文件的路径,并以list形式储存在data_paths中
classeNames = [str(path).split("/")[1] for path in data_paths] # 如果你的操作系统使用Windows,那么应该使用 .split("\\")。

import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件夹路径
image_folder = './data/cloudy/'

# 获取文件夹中的所有图像文件
# os.listdir()可以列举当前路径里的所有文件,endswith(str)判断是不是以str结尾的文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))] 

# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file) # os.path.join()用于路径拼接文件路径
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

# 显示图像
# plt.tight_layout(),Matplotlib 会自动调整子图的位置和大小,以确保所有元素都清晰可见,且没有重叠。
plt.tight_layout()
plt.show()

运行结果:
在这里插入图片描述
图形变换操作:

total_datadir = './data/'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛,Normalize函数做的是将数据变换到了[-1,1]之间
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

3、划分数据集

train_size = int(0.8 * len(total_data)) # 900
test_size  = len(total_data) - train_size # 225
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1) 
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出结果:

Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y:
torch.Size([32]) torch.int64

五、搭建简单的CNN网络

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(24)
        self.conv2 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(24)
        self.pool1 = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=24, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(12)
        self.conv5 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(12)
        self.pool2 = nn.MaxPool2d(2,2)
        
        
        self.fc1 = nn.Linear(12*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool1(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)    
       
        x = x.view(-1, 12*50*50)
        x = self.fc1(x)
        

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

nn.BatchNorm2d 是 PyTorch(一个流行的深度学习框架)中的一个模块,用于实现二维批量归一化(Batch Normalization)。批量归一化是深度学习中的一种技术,它可以使模型训练更加稳定,并且通常能够加速训练过程,提高模型的性能。通常,nn.BatchNorm2d 被添加到神经网络模型中,位于卷积层(如 nn.Conv2d)和激活函数(如 ReLU)之间。torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True, device=None, dtype=None) 。
num_features这个数值通常与上一层(在这里是 nn.Conv2d 卷积层)的输出特征图的数量相匹配。

打印输入维度的变化:

import torchinfo
from torchinfo import summary
summary(model, (3, 224, 224), batch_dim = 0, col_names = ("input_size", "output_size", "num_params"), verbose = 0)

结果:
在这里插入图片描述

六、训练模型

1、设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2、编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  
    num_batches = len(dataloader)   

    
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3、编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  
    num_batches = len(dataloader)          
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4、正式训练

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

输出结果:
在这里插入图片描述

七、结果可视化

import matplotlib.pyplot as plt
#隐藏警告 
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')

在这里插入图片描述

总结:

  • 路径转为pathlib.Path(path)对象。
  • glob()函数获取所有文件。
  • torch.utils.data.random_split()划分数据集。
  • nn.BatchNorm2d()实现归一化提高模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值