第T9周:使用TensorFlow实现猫狗识别2

电脑环境:
语言环境:Python 3.8.0
编译器:Jupyter Notebook
深度学习环境:tensorflow 2.15.0

一、前期工作

1.设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL,pathlib

#隐藏警告
import warnings
warnings.filterwarnings('ignore')

data_dir = "./365-7-data"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)

二、数据预处理

1、加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中。

batch_size = 64
img_height = 224
img_width = 224

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

输出:

[‘cat’, ‘dog’]

2、再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

输出:

(64, 224, 224, 3)
(64,)

3、可视化数据

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

3、数据增强、配置数据集

在上期的文章中,我们没有对数据进行数据增强,本次尝试数据增强改善模型性能。

AUTOTUNE = tf.data.AUTOTUNE

# 定义数据增强层
data_augmentation = tf.keras.Sequential([
    tf.keras.layers.RandomFlip("horizontal"),
    tf.keras.layers.RandomRotation(0.2),
    tf.keras.layers.RandomZoom(0.2),
    tf.keras.layers.RandomContrast(0.1)
])

def preprocess_image(image, label):
    image = image / 255.0
    image = data_augmentation(image)
    return image, label

def preprocess_val_image(image, label):
    image = image / 255.0
    return image, label

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
# 验证集不需要增强
val_ds   = val_ds.map(preprocess_val_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
  • RandomFlip:随机翻转,可以水平翻转(horizontal)和垂直翻转(vertical);
  • RandomRotation:随机旋转;
  • RandomZoom:随机缩放;
  • RandomContrast:随机对比度调整,增加或减少亮暗差异;

4、 显示数据增强后的数据

在这里插入图片描述

三、构建CNN网络

直接调用官方VGG16

from keras.applications import VGG16

model = VGG16(weights='imagenet')

model.summary()

四、编译

model.compile(optimizer="adam",
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])

五、训练模型

from tqdm import tqdm
import tensorflow.keras.backend as K

epochs = 10
lr     = 1e-4

# 记录训练数据,方便后面的分析
history_train_loss     = []
history_train_accuracy = []
history_val_loss       = []
history_val_accuracy   = []

for epoch in range(epochs):
    train_total = len(train_ds)
    val_total   = len(val_ds)
    
    """
    total:预期的迭代数目
    ncols:控制进度条宽度
    mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
    """
    with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
        
        lr = lr*0.92
        K.set_value(model.optimizer.lr, lr)
        
        train_loss     = []
        train_accuracy = []
        for image,label in train_ds:   
            """
            训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法

            想详细了解 train_on_batch 的同学,
            可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
            """
             # 这里生成的是每一个batch的acc与loss
            history = model.train_on_batch(image,label)
            
            train_loss.append(history[0])
            train_accuracy.append(history[1])
            
            pbar.set_postfix({"train_loss": "%.4f"%history[0],
                              "train_acc":"%.4f"%history[1],
                              "lr": K.get_value(model.optimizer.lr)})
            pbar.update(1)
            
        history_train_loss.append(np.mean(train_loss))
        history_train_accuracy.append(np.mean(train_accuracy))
            
    print('开始验证!')
    
    with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:

        val_loss     = []
        val_accuracy = []
        for image,label in val_ds:      
            # 这里生成的是每一个batch的acc与loss
            history = model.test_on_batch(image,label)
            
            val_loss.append(history[0])
            val_accuracy.append(history[1])
            
            pbar.set_postfix({"val_loss": "%.4f"%history[0],
                              "val_acc":"%.4f"%history[1]})
            pbar.update(1)
        history_val_loss.append(np.mean(val_loss))
        history_val_accuracy.append(np.mean(val_accuracy))
            
    print('结束验证!')
    print("验证loss为:%.4f"%np.mean(val_loss))
    print("验证准确率为:%.4f"%np.mean(val_accuracy))
Epoch 1/20: 100%|███| 43/43 [00:56<00:00,  1.31s/it, train_loss=0.7041, train_acc=0.4531, lr=9.2e-5]
开始验证!
Epoch 1/20: 100%|██████████████████| 11/11 [00:02<00:00,  3.79it/s, val_loss=0.7103, val_acc=0.5000]
结束验证!
验证loss为:0.7073
验证准确率为:0.5085
Epoch 2/20: 100%|██| 43/43 [00:10<00:00,  4.30it/s, train_loss=0.6984, train_acc=0.5312, lr=8.46e-5]
开始验证!
Epoch 2/20: 100%|██████████████████| 11/11 [00:01<00:00,  8.82it/s, val_loss=0.6984, val_acc=0.5000]
结束验证!
验证loss为:0.6955
验证准确率为:0.5085
Epoch 3/20: 100%|██| 43/43 [00:09<00:00,  4.48it/s, train_loss=0.6942, train_acc=0.4688, lr=7.79e-5]
开始验证!
Epoch 3/20: 100%|██████████████████| 11/11 [00:01<00:00,  8.85it/s, val_loss=0.6934, val_acc=0.5000]
结束验证!
验证loss为:0.6942
验证准确率为:0.4915
Epoch 4/20: 100%|██| 43/43 [00:09<00:00,  4.33it/s, train_loss=0.6976, train_acc=0.4531, lr=7.16e-5]
开始验证!
Epoch 4/20: 100%|██████████████████| 11/11 [00:01<00:00,  9.86it/s, val_loss=0.6944, val_acc=0.5000]
结束验证!
验证loss为:0.6959
验证准确率为:0.5043
....................................................................................................
Epoch 20/20: 100%|| 43/43 [00:09<00:00,  4.49it/s, train_loss=0.3254, train_acc=0.7656, lr=1.89e-5]
开始验证!
Epoch 20/20: 100%|█████████████████| 11/11 [00:01<00:00,  9.75it/s, val_loss=0.3012, val_acc=0.9500]
结束验证!
验证loss为:0.1548
验证准确率为:0.9670

六、模型评估

epochs_range = range(epochs)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

七、预测

import numpy as np

# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("预测结果展示")

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(1,8, i + 1)  
        
        # 显示图片
        plt.imshow(images[i].numpy())
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")

输出:

1/1 [==============================] - 0s 303ms/step
1/1 [==============================] - 0s 26ms/step
1/1 [==============================] - 0s 19ms/step
1/1 [==============================] - 0s 19ms/step
1/1 [==============================] - 0s 20ms/step
1/1 [==============================] - 0s 21ms/step
1/1 [==============================] - 0s 20ms/step
1/1 [==============================] - 0s 21ms/step

在这里插入图片描述

八、总结

本次使用了自定义数据增强方式,对dataset进行操作,也可以使用数据增强生成器ImageDataGenerator进行数据增强。

  • 16
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用TensorFlow实现猫狗识别的代码示例: ```python import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator # 定义训练集和验证集的路径 train_dir = '/path/to/train' validation_dir = '/path/to/validation' # 进行数据增强 train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest' ) test_datagen = ImageDataGenerator(rescale=1./255) # 定义训练集和验证集的生成器 train_generator = train_datagen.flow_from_directory( train_dir, target_size=(150, 150), batch_size=20, class_mode='binary' ) validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary' ) # 构建模型 model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) # 编译模型 model.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.RMSprop(lr=1e-4), metrics=['accuracy']) # 训练模型 history = model.fit( train_generator, steps_per_epoch=100, epochs=100, validation_data=validation_generator, validation_steps=50, verbose=2 ) ``` 在上述代码中,我们使用TensorFlow的`ImageDataGenerator`来进行数据增强,从而提高模型的泛化能力。然后,我们定义了训练集和验证集的生成器,并使用这些生成器训练我们的模型。模型的结构为4个卷积层和2个全连接层,使用了ReLU作为激活函数,并在输出层使用了sigmoid函数作为二元分类器的激活函数。最后,我们使用了RMSprop优化器和二元交叉熵作为损失函数进行模型的编译和训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值